114. Preparation of Campholenal Analogues: Chirons for the Lipophilic Moiety of Sandalwood-Like Odorant Alcohols

by Christian Chapuis* and Robert Brauchli

Firmenich SA, Research Laboratories, P.O.B. 239, CH-1211 Geneva 8

Dedicated to the memory of Dr. A.F. Thomas

(4.VI.92)

In connection with structure-activity relationship studies, analogues of campholenal ((+)-**4b**), an important building block for sandalwood-like odorants, were prepared. The five-membered-ring analogues **4** were obtained by epoxidation of the corresponding α -pinene derivatives **2**, followed by catalytic ZnBr₂ isomerisation (*Scheme 2*). The six-membered-ring skeleton was obtained by ozonolysis of α -campholenyl acetate ((-)-**14b**), followed by intramolecular aldol condensation (*Scheme 5*). ¹³C-NMR assignments are given.

Introduction. – Information concerning the structure of a receptor is of great interest for the design of biologically active compounds. Whereas several examples of X-ray structure analyses of a particular receptor are known in the case of pharmaceutical applications [1], there are unfortunately no such examples for olfactory receptors. Because of this fact, receptor mapping [2] is dependent on a large data base of analogues, which allow the determination, either empirically or analytically, of the primordial factors of interaction. These include steric hindrance, intramolecular distances [3], cavity or space-filling concepts [4], lipophilicity [5], associated with molecular surfaces [6] and volumes [7], hydrophobicity [8], allied with accessible polar surfaces [9], dipole moment [10], and the partition coefficient between H_2O and octanol [11], binding energy [12], electrostatic potential [13], *etc.*

To test diverse statistical approaches based on connectivity [14a,b], analogy and intelligence in model-building techniques [14c], expert systems [15], or neural networks [16], we selected a series of sandalwood-like odorant alcohols of structure type A (*Scheme I*) derived from campholenal (= 2,2,3-trimethylcyclopent-3-ene-1-acetaldehyde; (+)-

4b), which would comprise a large data base [17] for a well-defined characteristic odour. Indeed, multiple variations of the hydrophilic part of the molecule were already described in the literature [18], but our specific interest was to increase our knowledge concerning

the lipophilic part by structural modification of the campholenic moiety, so as to retain an optimal common fit [19] and to determine the influence of neuralgic substitutions, unsaturation, or configuration.

In the following, we describe the syntheses of series of five- and six-membered-ring acetaldehydes suitable to be transformed to alcohols of type **A**. The preparation and olfactive properties of the latter will be reported in due course.

Results. – a) Five-Membered-Ring Analogues. Fencholenal (= 2,2,4-trimethylcyclopent-3-ene-1-acetaldehyde; (+)-1) [20] recently received particular attention as an analogue of (+)-4b, although its synthesis requires the use of an expensive Ag salt. This prompted us to prepare the analogues 4c-o of campholenal ((+)-4b) [21] by modification of the substrate 3 in the well known modified Arbuzow preparation [22], involving the isomerisation of α -pinene epoxide ((-)-3b) [23] in the presence of a catalytic amount of ZnBr₂ in refluxing toluene (Scheme 2). The known rapid rearrangement of epoxide (-)-3a [24] to aldehyde (+)-4a [25] under the same conditions supported our choice of approach. The substrates 3 were all obtained from their precursors 2 by epoxidation with AcO₂H.

i) AcO₂H, AcOH, NaHCO₃, toluene. ii) 0.05 mol-equiv. of ZnBr₂, toluene, 110°.

^a) From (-)-2**k**. ^b) From (+)-4**g**. ^c) From (+)-4**f**. ^d) Yield of (-)-5**a** (*Scheme 3*). ^e) From (-)-8 (*Scheme 3*). ^f) From (+)-10. ^g) From (-)-myrtenol.

Under the conditions described above, ethylapopinene epoxide ((-)-3c) analogously rearranged to aldehyde (+)-4c in 64% yield. To have general access to higher alkylated homologues, we added methyl cuprate [26] to tosylate (-)-2i [27] and isolated propylapopinene ((-)-2d; 85% yield) [28]. The butyl homologue (-)-2e [29] was obtained in 85% yield by the *Huang-Minlon* modification of the *Wolff-Kishner* reduction [30] (N₂H₄, KOH, ethylene glycol) of ketone (-)-2k [31]. The corresponding epoxides (-)-3d (93%)

and (-)-3e (88%) were subsequently rearranged to aldehydes (+)-4d (70%) and (+)-4e (72%), respectively.

The commercially available nopol ((-)-2f) and nopyl acetate ((-)-2g) [32] afforded epoxides (-)-3f (86%) [33] and (-)-3g (83%), whose subsequent isomerisation to (+)-4f(61%) and (+)-4g (69%), respectively, proceeded smoothly despite the possible deactivation of ZnBr₂ by chelation with the supplementary heteroatom. An alternative approach to (+)-4f consisted in saponification of (+)-4g (LiOH, THF/H₂O 5:4; 80%). Epoxide (-)-3h was isomerised to methoxy-aldehyde (+)-4h in 65% yield. The thermally unstable epoxy sulfonate (-)-3i (85% from (-)-2i) decomposed violently on heating, and even in solution, it did not withstand the isomerisation conditions; tosylate (+)-4i was, therefore, prepared from alcohol (+)-4f (TsCl, pyridine, 87%).

Epoxidation of (1R)-nopadiene ((-)-2j) [34]¹) furnished a complex mixture of monoand di-epoxides (70:5:2:12:11) from which the major component (-)-3j, was obtained in

i) AcO₂H, AcOH, NaHCO₃, toluene. *ii*) Mg, Et₂O. CH₃CHO. *iii*) Pyridinium chlorochromate, CH₂Cl₂. *iv*) MeMgI, Et₂O. *v*) HC(OEt)₃, C₅H₁₁CO₂H. *vi*) LiAlH₄, Et₂O. *vii*) NaH, THF, MeI. *viii*) TsCl, pyridine. *ix*) NaOMe, MeOH.

37% yield after distillation. Isomerisation of (-)-3j gave a 16:64:20 mixture of (+)-4j, (-)-5a, and (+)-(Z)-6 (see Scheme 3) from which the unstable dienal (+)-4j (10%) [35] and ketone (-)-5a (53%) were isolated. The presence of (-)-5a is explained by the fact that the stabilised allylic carbocationic intermediate favours isomerisation to a ketone as opposed to skeletal rearrangement to an aldehyde. Base treatment of (-)-5a and (+)-(Z)-6 (5% MeONa, MeOH, 90% yield) afforded exclusively the known enone (+)-(E)-6 (Scheme 3) [36].

Methyl ketone (-)-2k²) was obtained by a *Carroll* reaction on (+)-*trans*-pinocarveol ((+)-10) [41], and epoxidation gave (-)-3k³) (90%) which was isomerised to a 76:24 mixture of aldehyde (+)-4k (35%) and ketone (-)-5c (18%), purified by chromatography. In contrast, epoxy ester (-)-3l [42] cleanly rearranged to aldehyde (+)-4l (67%).

Epoxidation of methyl myrtenyl ether ((-)-2m) [43] gave rise to (-)-3m (68%) followed by clean isomerisation to the volatile aldehyde (+)-4m (58%). Similarly, epoxide

¹⁾ Pure **2j** (99.9% by GC) is levorotatory neat ($\alpha_{D}^{20} = -1.4$) and dextrorotatory in solution ($[\alpha]_{D}^{20} = +5.8$ (c = 8.25, hexane); [34]: $[\alpha]_{D}^{24} = +3.8$ (c = 8.4, hexane) and $[\alpha]_{D}^{20} = +1.2$ (c = 1.8, CHCl₃); [27]: $[\alpha]_{D}^{20} = +1.3$ (c = 1.5, CHCl₃)).

²) Also prepared from (-)-myrtenyl bromide, **2k** is described as dextrorotatory ([α]_D^D = +26.1 (c = 2.08, MeOH)) [31a]; this is in disagreement with our observations ([α]_D²⁰ = -36.9 (c = 2.3, MeOH)). For this reason, we correlated (-)-**2k** with (-)-nopol ((-)-**2f**) as follows (*Scheme 3*): tosylate (-)-**2i** [27] was converted to iodide (-)-**7a** in 93% yield (EtMgI, Et₂O; these new reaction conditions for the transformation of a primary tosylate to its corresponding halide were recently discovered in our laboratory and will be reported in due course), and the corresponding *Grignard* reagent was added to acetaldehyde to give the secondary alcohol (-)-**8** in 60% yield. Oxidation (pyridinium chlorochromate, CH₂Cl₂; 88% yield) afforded (-)-**2k** ([α]_D²⁰ = -38.1 (c = 2.1, MeOH)) which was treated with a methyl *Grignard* reagent to give the tertiary alcohol (-)-**9** (94% yield; α_D²⁰ = -25.1) with the same absolute configuration as that obtained by a double addition of methyl *Grignard* reagent o((+)-**10**) (α_D²⁰ = +53) gave (+)-pinocarvone (α_D²⁰ = +52.7 (neat)) [38] and that (-)-**2d** (α_D²⁰ = -26.3 (neat)) was also obtained from the hydride reduction (LiAlH₄, 76%) of tosylate (-)-**7d**, prepared from alcohol ((-)-**7b** [39], confirms the absolute configuration of all compounds described in our work [40]. After completion of this correlation, we were informed by Dr. *A. Kazubski* of a printing error in [31a].

³) Epoxide (-)-3k is sensitive to acidic conditions and readily gave acetal (-)-11 (see Scheme 4).

(-)-3n (79% from (-)-2n) afforded homologue (+)-4n in 53% yield. Aldehyde (+)-4o, finally, was obtained from (-)-2o [44] (59% yield) and represents, with (+)-4f (and (+)-4c), a potential homologue of (+)-4b, after appropriate transformations. Epoxidation of iodide (-)-7a resulted in the formation of a mixture of (-)-2g (22%), (-)-3g (20%), and (+)-12 (44%, Scheme 3) [45].

Finally, aldehyde (+)-13 [46], with an exocyclic C=C bond, was obtained selectively in 71% yield from (+)-4f by a thermal *retro-Prins* reaction (*Scheme 4*).

b) The Six-Membered-Ring Analogues. The absolute configuration is an important factor for a comparison of organoleptically active compounds [47], and to retain the same absolute configuration, we decided to use campholenal ((+)-4b) as a chiral starting material. Oxidative degradation followed by intramolecular aldol condensation, leading to chiral cyclohexanones, was already applied to syntheses of (-)-khusimone [48a, b] and (+)-norpatchoulenol [48c]. Following the same methodology, alcohol (+)-14a [49], obtained from (+)-4b in 97% yield, was acetylated to acetate (-)-14b [50] (Scheme 5);

i) LiAlH₄, Et₂O. *ii*) Ac₂O, H₃PO₄. *iii*) O₃, CH₂Cl₂, MeOH, -70° . *iv*) *a*) Me₂S, 20° , 24 h; *b*) TsOH, cyclohexane, 100°. *v*) H₂, *Raney*-Ni, EtOH. *vi*) Pyridinium chlorochromate, CH₂Cl₂. *vii*) NH₂NHTs, MeOH, cat. H₂SO₄. *viii*) [PPh₃(Me)]I, *t*-BuOK, toluene. *ix*) MeLi, Et₂O, -5° .

subsequent ozonolysis gave a mixture of diastereoisomeric ozonides from which the major component (+)-15a was isolated and fully characterised. Reductive workup (Me₂S) of the crude mixture of ozonides and cyclisation (TsOH, refluxing cyclohexane) gave cyclohexenone (+)-16a (65% from (-)-14b). The homologue (+)-16b, a potential chiron for the synthesis of either (*R*)-verticillene [51] or (2R,6R,2'R,6'R)-decaprenoxanthin [52], was similarly obtained from aldehyde (+)-4c via (+)-14c, (-)-14d, and (+)-15b. Catalytic hydrogenation of (+)-16a (H₂, Raney-Ni; 95%) gave cyclohexanone (+)-17a which was submitted to a Wittig reaction ([PPh₃(Me)]I, t-BuOK, toluene; 72%) to afford the desired acetate (+)-17c. Deprotection (LiAlH₄, Et₂O; \rightarrow 17d 96%) and oxidation (pyridinium chlorochromate, CH₂Cl₂; 99%) gave the target aldehyde (+)-18, a homologue of (+)-13 (see Scheme 4).

Alcohol (-)-19a, obtained by a *Shapiro* reaction [53] from cyclohexanone (+)-17a via hydrazone 17b in 68% overall yield, was similarly oxidised to aldehyde (-)-20a (95%), a homologue of (+)-4a (see *Scheme 2*). The exocyclic C=C bond of (+)-17c was isomerised into the endocyclic position (TsOH, refluxing toluene) to afford acetate (-)-19b (70%). The same sequence of deprotection (\rightarrow 19c) and oxidation steps furnished the six-membered-ring campholenal analogue (-)-20b (87% overall yield from (-)-19b).

Concerning the ozonides, purified by chromatography [54], it was clear from the ¹³C-NMR analysis that the major diastereoisomer has an equatorial side chain $(\delta(C(3)) = 38.1 \text{ ppm})$ attributed to the more stable conformer (+)-15a. The axial side chain $(\delta(3) = 33.9 \text{ ppm})$ was in accord with the slightly more stable conformer of the minor diastereoisomer (*Scheme* 6).

We are indebted to Dr. K.-H. Schulte-Elte for constant stimulating discussions and Dr. B. Winter for MM2 calculations of the diastereoisomers and conformers of (+)-15a as well as Mrs. B. Baer, Miss C. Cantatore, and Mr. M. Wuest for their experimental skill.

Experimental Part

General. All reactions were performed under N₂. GLC: Hewlett Packard 5890 instrument equipped with a flame ionization detector coupled to a Hewlett Packard 3396 A integrator; capillary columns Chrompack. DB-Wax (15 m, 0.25 mm), and DB-1 (15 m, 0.25 mm). Prep. GLC: Varian 700, packed columns Carbowax (6 m, 0.6 cm). TLC: silica gel 60 (Merck F 254, layer thickness 0.25 mm). Prep. CC: silica gel 60 (Merck, 0.063–0.2 mm, 70–230 mesh, ASTM). Bulb-to-bulb distillation: Büchi GKR-50 oven; b.p. correspond to the air temp. Optical rotations: Perkin Elmer-241 polarimeter; with pure material, when solvent and concentration not specified. IR spectra (liquid film): Perkin-Elmer-297 spectrometer; in cm⁻¹. NMR: Bruker WH-360, Bruker AMX-360; ¹H at 360 and ¹³C at 90 MHz (Tables 1–6); in CDCl₃; chemical shifts (δ) in ppm rel. to TMS; 2D experiments such as COSY and C/H correlations were performed when necessary. MS: Varian MAT-112 spectrometer (ca. 70 eV); intensities in % rel. to the base peak (100%).

Starting Materials. (-)-2a [56], $\alpha_D^{20} = -47.2$, 98% e.e.; (-)-2b (Aldrich), $\alpha_D^{20} = -50.7$, 98% e.e.; (-)-2c [57], $[\alpha]_D^{20} = -48.1 (c = 1.9, CHCl_3)$, 90% e.e.; (-)-2d [28], $\alpha_D^{20} = -30.1$, 92% e.e.; (-)-2f (*Fluka AG*), $\alpha_D^{20} = -35.6$, 90% e.e.; (-)-2g (*Rhône Poulenc*), $\alpha_D^{20} = -31.9$, 90% e.e.; (-)-2h [58], $\alpha_D^{20} = -29.8$, 91% e.e.; (-)-2i [27], $[\alpha]_D^{20} = -28.5$ (c = 2.3, MeOH), 96% e.e.; (-)-2m [43], $\alpha_D^{20} = -30.0$, 94% e.e.; (-)-2o [44], $\alpha_D^{20} = -23.1$, 92% e.e.; (-)-7e [59], $\alpha_D^{20} = -31.1$, 85% e.e.

General Procedure A for the Preparation of Epoxides. To a suspension of Na_2CO_3 (238 g, 2.24 mol), EDTA tetrasodium salt (6.5 g, 17 mmol), and the corresponding olefin (1.4 mol) in toluene (700 ml) was added dropwise at 20° (exothermic) a 40% soln. of AcOOH (400 g, 2.1 mol). The mixture was stirred at r.t., until no more starting material was detected by GLC (*ca.* 2–15 h), then H₂O (180 ml) was added dropwise. The mixture was diluted with toluene (300 ml), washed successively with H₂O, sat. aq. NaHCO₃ soln., and brine, dried (Na₂SO₄), and evaporated. The crude oil was distilled over a 15-cm *Vigreux* column to afford the epoxide as a colourless oil.

General Procedure B for the Isomerisation of Epoxides to Aldehydes Using $ZnBr_2$. To a suspension of anh. ZnBr₂ (1.1 g, 5 mmol) in refluxing toluene (100 ml) was added dropwise a soln. of the corresponding epoxide (1 mol) in toluene (250 ml). The mixture was stirred at reflux temp., until no more starting material was detected by GLC (*ca.* 2–18 h). After cooling at r.t., a soln. of AcOH (2 ml) in H₂O (130 ml) was added. The mixture was diluted with toluene (150 ml), washed successively with H₂O, sat. aq. NaHCO₃ soln., and brine, dried (Na₂SO₄), and evaporated.

(-)-(1 R)-2-Butyl-6,6-dimethylbicyclo[3.1.1]hept-2-ene ((-)-2e). A mixture of diethylene glycol (140 ml), KOH (20 g, 360 mmol), (-)-2k (20 g, 0.104 mol) and hydrazine hydrate (80%; 15 ml, 0.17 mol) was heated at reflux (130°) for 1.5 h under continuous removal of the H₂O formed (*Dean-Stark* apparatus). The temp. was then raised to 200° during 2.5 h, and the mixture was cooled to 0°. H₂O (145 ml) and 6N HCl (85 ml) were then cautiously added. The mixture was extracted with cyclohexane and the combined extract successively washed with H₂O and brine, dried (Na₂SO₄), and evaporated. The crude oil (19.1 g) was purified by CC (SiO₂, 345 g, cyclohexane): (-)-2e (15.6 g, 85%). Colourless oil after bulb-to-bulb distillation. B.p. 81°/10 Torr. $\alpha_{2D}^{2D} = -23.7$. IR: 2950, 1480, 1400, 1380. ¹H-NMR: 0.84 (s, 3 H); 0.90 (t, J = 7, 3 H); 1.16 (d, J = 7, 1 H); 1.26 (s, 3 H); 1.3 (m, 4 H); 1.93 (m, 2 H); 2.0 (t, J = 5, 1 H); 2.07 (m, 1 H); 2.2 (m, 2 H); 2.35 (dt, J = 5.8, 1 H); 5.16 (br. s, 1 H). ¹³C-NMR: *Table 1*. MS: 178 (7, M^+), 135 (19), 121 (18), 105 (15), 93 (48), 79 (71), 57 (100), 41 (39).

(-)-(1'R)-4-(6', 6'-Dimethylbicyclo[3.1.1]hept-2'-en-2'-yl)butan-2-one ((-)-2k). To a suspension of pyridinium chlorochromate (3.23 g, 15 mmol) in CH₂Cl₂ (5 ml) was added dropwise a soln. of (-)-8 (1.94 g, 10 mmol) in CH₂Cl₂ (5 ml). The mixture was stirred overnight at r.t., diluted with Et₂O (50 ml), filtered over *Celite*, washed successively with 15% aq. HCl soln., H₂O, and brine, dried (Na₂SO₄), and evaporated. The crude oil (2.1 g) was chromatographed (SiO₂, 100 g, cyclohexane/AcOEt 9:1): (-)-2k (1.69 g, 88%). Colourless oil after bulb-to-bulb distillation. B.p. 86°/1 Torr. $[\alpha]_{D}^{20} = -38.1$ (c = 2.1, MeOH). IR: 2990, 2920, 1720, 1440, 1360, 1160. ¹H-NMR: 0.81 (s, 3 H); 1.13 (d, J = 7, 1 H); 1.27 (s, 3 H); 1.98 (t, J = 5, 1 H); 2.08 (m, 1 H); 2.15 (s, 3 H); 2.22 (m, 4 H); 2.35 (dt, J = 5, 8, 1 H); 2.48 (t, J = 7, 2 H); 5.2 (br. s, 1 H). ¹³C-NMR: *Table 1*. MS: 192 (1, M^{++}), 177 (2), 159 (3), 149 (16), 134 (20), 119 (42), 105 (13), 91 (100), 79 (15), 43 (43).

(-)-Ethyl (1R)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-propanoate ((-)-2l). A mixture of (+)-transpinocarveol (10 g, 66 mmol; $\alpha_{2D}^{00} = +53$), triethyl orthoacetate (16.2 g, 0.1 mol), and hexanoic acid (1 g, 10 mmol) was heated with continuous distillation of EtOH. The mixture was then diluted with Et₂O (150 ml) and washed successively with sat. aq. NaHCO₃ soln. and H₂O, dried (Na₂SO₄), and evaporated. The crude oil (15.7 g) was distilled over a 15-cm *Vigreux* column: (-)-2l (9.96 g, 68%). Colourless oil. B.p. 91°/0.25 Torr. $\alpha_{2D}^{00} = -28$. IR: 2960, 2900, 1725, 1460, 1440, 1360. ¹H-NMR: 0.81 (s, 3 H); 1.15 (d, J = 7, 1 H); 1.26 (t, J = 7, 3 H); 1.28 (s, 3 H); 2.0 (t, J = 5, 1 H); 2.08 (m, 1 H); 2.21 (m, 2 H); 2.28 (m, 2 H); 2.35 (m, 3 H); 4.13 (q, J = 7, 2 H); 5.24 (br. s, 1 H). ¹³C-NMR: *Table 1*. MS: 222 (4, M^{++}), 207 (3), 179 (12), 161 (10), 148 (8), 133 (87), 119 (57), 105 (100), 91 (85), 79 (27), 41 (28).

								1				1 2							
	R	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	Me_{exo} -C(6)	Meendo-C(6) C(7)	R								
(-)-2a ^a)	Н	42.1	136.6	124.1	32.6	41.4	38.0	26.5	21.3	32.1									1
$(-)-2b^{a}$	Me	47.3	144.5	116.2	31.3	41.0	38.1	26.4	20.8	31.5	23.0								
(-)-2c	Et	46.0	150.1	114.5	31.3	41.2	38.0	26.4	21.2	31.7	29.7	11.8							
(-)-2d	Pr	46.0	148.6	115.8	31.4	41.1	38.0	26.4	21.2	31.7	39.3	20.4	14.0						
(-)-2e ^a)	Bu	46.0	148.8	115.5	31.3	41.1	38.0	26.4	21.2	31.7	36.7	29.5	22.6	14.0					
(-)-2f	(CH ₂) ₂ OH	45.8	144.9	119.0	31.4	40.9	38.0	26.3	21.2	31.8	40.3	60.2							
(-)-2g	(CH ₂) ₂ OAc	45.8	144.3	118.8	31.4	40.9	38.0	26.3	21.1	31.7	36.0	62.7		170.8	20.8				
$(-)-2h^{a})$	(CH ₂) ₂ OMe	46.0	145.2	117.8	31.4	41.0	38.1	26.4	21.2	31.7	37.1	71.2		58.4					
(-)- 2i	$(CH_2)_2OT_S$	45.7	142.8	119.7	31.3	40.7	38.0	26.2	21.1	31.5	36.1	68.6			144.6	127.9	129.8	133.5	21.6
(-)- 2]	CH ₂ =CH	41.2	146.9	124.2	31.3	40.5	37.7	26.4	20.7	31.9	137.8	109.6							
()-2k ^a)	(CH ₂) ₂ COMe	46.0	146.9	116.4	31.2	40.9	38.0	26.3	21.1	31.6	30.9	41.4	208.3	29.7					
$(-)-2l^{a})$	(CH ₂) ₂ COOEt	45.9	146.7	116.7	31.3	40.9	38.0	26.3	21.1	31.6	32.0	32.4	173.4		60.2	14.3			
(-)- 2m	CH ₂ OMe	43.5	145.5	119.9	31.3	41.1	38.0	26.3	21.1	31.6	75.6		57.7						
(-)- 2n	CH ₂ OEt	43.5	145.8	119.2	31.3	41.1	38.0	26.3	21.0	31.6	73.5		65.2	15.2					
$(-)-20^{a})$	(CH ₂) ₃ COOMe	45.8	147.4	116.7	31.3	41.0	38.0	26.4	21.2	31.7	36.3	22.6	33.7	174.0		51.3			
()-7a	$(CH_2)_2I$	45.5	146.8	118.7	31.3	40.8	38.1	26.3	21.4	31.8	41.5	3.3							
q L-(-)	$(CH_2)_3OH$	45.9	147.9	116.2	31.3	41.0	38.0	26.4	21.2	31.7	33.1	30.3	62.8						
(-)-7c	(CH ₂) ₃ OMe	46.0	147.9	116.1	31.3	41.0	38.0	26.4	21.2	31.7	33.3	27.4	72.7		58.5				
p ∠-(−)	(CH ₂) ₃ OT ₅	45.7	146.5	117.2	31.2	40.9	37.9	26.3	21.1	31.6	32.4	26.5	70.3		-	144.6	128.0	129.8	33.5 21.6
(-)-7e	(CH ₂) ₂ CHO	46.0	146.4	117.1	31.3	40.9	38.0	26.3	21.1	31.6	29.3	41.4	202.5						
6-()	(CH ₂) ₂ C(CH ₃) ₂ OH	46.1	148.4	115.8	31.3	41.0	38.0	26.4	21.2	31.8	31.7	41.3	70.8	29.2	29.3				
^a) 2D E	xperiments: COSY at	nd C,F	I correl	lations															

Table 1. ¹³C-NMR Data of Compounds (-) -2a-0, (-) -7a-e, and (-)-9

Helvetica Chimica Acta – Vol. 75 (1992)

							Table 2	. ¹³ C-NMR 1	Data of $(-)$:	3a− 0								
	R	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	Me_{evo} -C(6)	Meendo-C(6) C(7)	R							
$(-)-3a^{a})$	Н	39.9	54.5	49.7	27.8	40.1	40.7	26.7	19.7	24.4								
$(-)-3b^{a}$	Me	45.2	60.2	56.9	27.7	39.8	40.5	26.7	20.2	25.9	22.4							
(–) - 3c	Et	43.5	63.5	55.3	27.7 ^b)	40.3	40.7	26.8	20.2	25.8	27.8^{a})	7.6						
(-)-3d	Pr	43.6	63.0	55.5	27.8	40.2	40.7	26.9	20.3	25.8	37.4	16.9	14.4					
(−)-3e	Bu	43.6	63.1	55.6	27.8	40.2	40.7	26.8	20.3	25.8	34.8	25.8	23.0	14.0				
JE-(-)	$(CH_2)_2OH$	44.4	63.0	54.9	27.5	40.0	40.6	26.7	20.2	25.6	36.5	58.6						
(-)- 3 g	$(CH_2)_2OAc$	43.9	60.9	55.4	27.6	40.0	40.7	26.8	20.0	25.7	34.0	60.2		170.8	20.9			
)-3h	(CH ₂) ₂ OMe	44.0	61.2	55.7	27.7	40.1	40.7	26.8	20.1	25.8	34.9	68.3		58.4				
(–)- 3i	$(CH_2)_2OT_S$	43.8	60.4	55.5	27.5	39.8	40.6	26.6	20.0	25.7	34.2	66.4		144.8	127.9	129.9	133.2	21.6
(-)- 3 j	CH ₂ =CH	41.6	61.6	58.1	27.6	40.1	40.4	26.6	20.3	25.7	139.2	116.6						
()-3k	(CH ₂) ₂ COMe	43.8	62.2	55.6	27.6	40.1	40.7	26.7	20.2	25.8	28.7	37.7	208.0	29.8				
(-)- 3I ^a)	(CH ₂) ₂ COOEt	43.8	62.1	55.3	27.6	40.1	40.7	26.8	20.2	25.8	30.0	28.6	173.4		60.4	14.2		
(-)- 3m	CH ₂ OMe	40.5	62.3	52.8	27.3	40.2	40.7	26.7	20.2	25.5	74.2		59.3					
$(-)-3n^{a}$	CH ₂ OEt	40.6	62.4	52.9	27.4	40.2	40.7	26.7	20.3	25.5	72.3		66.9	15.1				
$(-)-30^{2}$	(CH ₂) ₃ COOMe	43.4	62.6	55.3	27.7	40.2	40.7	26.8	20.2	25.7	34.3	19.2	33.9	173.7		51.3		
a) 2D I	Experiments: COSY	/ and C,	H corre	lations.														
b) Intei	rchangeable.																	

Helvetica Chimica Acta – Vol. 75 (1992)

							l able 3.	C-NM	R Data of (+)-	4a-0 and ((+)- 13 ^a)								
	R	C(1)	C(2)	C(3)	C(4)	C(5)	$Me_{cis}-C(5)^{I}$	b) Me	$_{rans}$ -C(5) ^b) CH ₂	2CHO CH	l ₂ CHO R								
(+)- 4 a	Н	142.1	1 126.9	37.9	43.1	46.1	22.2	27.8	44.9	202	2.6						-		
(+)- 4b	Me	148.() 121.6	35.6	43	47.0	20.1	25.7	45.2	202	2.7	12.6							
(+)-4c	Et	154.1	1 119.2	35.6	4.6	47.3	20.5	25.8	45.0	202	.9	19.7	2.1						
(+)-4d ^c)	Pr	152.4	4 119.9	35.7	44.5	47.3	20.5	25.8	45.0	202	2.9	29.1 2	1.1	14.2					
(+)- 4 e	Bu	152.(5 119.8	35.7	44.5	47.4	20.5	25.8	45.0	1 202	.9	26.5 3	0.1	22.8 1	4.0				
(+)- 4f	$(CH_2)_2OH$	148.6	5 122.0	35.8	<u>4</u>	47.5	20.5	25.8	44.9	202	2.7	30.2 6	51.2						
(+)- 4 g	$(CH_2)_2OAc$	147.5	9 122.1	35.9	44.0	47.4	20.4	25.7	44.9	202	4.	26.1 6	3.3	17	0.9 20	9.0			
4+ -(+)	(CH ₂) ₂ OMe	148.9	9 121.2	35.9	44.1	47.5	20.5	25.8	44.9	202	1.7 2.	7.0 7	1.6	5	8.6				
(+)- 4 i	$(CH_2)_2OT_S$	146.5	5 122.8	35.9	43.9	47.4	20.4	25.6	44.8	202	1.3	26.5 6	0.6		4	4.8 12	8.0 129	.8 133.5	5 21.6
(+)-4 k	(CH ₂) ₂ COMe	151.1	1 120.3	35.6	4. 4	47.4	20.4	25.7	44.9	202	1.6 2	20.8 4	1.8 20	38.2 2	9.8				
(+)- 4]	(CH ₂) ₂ COOEt	150.5	9 120.4	35.7	4 4	47.4	20.4	25.7	44.9	202	1.6	22.1 3	2.6 17	73.4	90	1.	4.2		
(+)- 4m	CH ₂ OMe	148.4	4 125.4	35.7	44.8	46.5	20.9	25.8	44.7	202	.4 6	9.4	4)	58.0					
(+)-4n°)	CH,OEt	148.7	7 125.0	35.7	44.9	46.5	20.9	25.8	44.7	202	.5 6	57.3	Ŷ	55.7 1:	5.2				
(+)-40	(CH ₂) ₂ COOMe	151.3	3 120.7	35.7	44.4	47.4	20.5	25.8	44.9	202	.6 2	26.2 2	3.2 3	33.9 17	4	S	1.4		
(+)- 13 °)	$(CH_2=)$	160.7	7 30.6	28.4	44.4	43.9	23.6	26.6	44.9	202	.4 10	3.8							
^a) For ^b) <i>cis</i> / ^c) 2D	convenience, the trans relative to 1 Experiments: CC	e five-n the CH JSY ar	nember 1 ₂ CHO : 1d C,H	ed ring side ch correla	g is alw nain. utions.	vays nu	ımbered in a	ı counte	r-clockwise dire	ection, witl	h C(1) bei	ng sub	stituted	by R; fc	r system	latic n	ames, se	e Exper.	Part
							Table	4. ¹³ C-1	VMR Data of C	ompounds	14 ^a)								
	R	\mathbb{R}^2	C(1)	C(;	2)	C(3)	C(4) (C(5)	$Me_{cis}-C(5)^b)$	Me_{trans} -	-C(5) ^b)	CH₂CI	H ₂ O (CH ₂ OR ₂	×	а.		R	
(+)- 14a	Η	Н	148.6	121	1.7	35.6	46.9 4	46.9	19.8	25.8		33.4		52.5				12.6	
(-)-14b	Η	Ac	148.5	121	1.6	35.4	47.1 4	46.9	19.7	25.7		29.1	Ų	54.3	17	71.1	21.0	12.5	
(+)- 14 c	Me	Н	154.8	511	9.2	35.6	47.2 1	n.v.	20.2	25.9		33.2	ę	52.6				19.7	12.2
(-)- 14d	Me	Ac	154.7	115	9.2	35.5	47.4 4	47.2	20.2	25.8		29.0	ų	54.3	1	1.1	21.0	19.7	12.2
p ()	See Footnote a in cis/trans relative	Table to the	3. CH ₂ CH	OR ²	side cł	hain.													

1536

Helvetica Chimica Acta - Vol. 75 (1992)

											E.		11 Jon 4	R				
						Table	s 5. ¹³ C-i	NMR D	ata of C	spunoduo	(6–20 ^a)	B						
	R ¹	\mathbb{R}^2	×	C(I)	C(2)	C(3)	C(4)	C(5)	C(6)	Mecis-C(6	^b) Metrans-	-C(6) ^b) R	¹ CH ₂	-~			\mathbb{R}^2	×
(+)-16a ^c)	CH ₂ OAc	Н	=0	203.8	128.2	146.9	28.7	40.5	45.1	18.9	22.3	28	3.6	62.7 1	70.8	20.8		
$(+)-16b^{c}$	CH ₂ OAc	Me	=0	204.1	133.8	141.6	28.5	40.8	44.9	18.9	22.6	32	8.7	62.8 1	71.0	20.9	16.4	
$(+)-17a^{c}$	CH ₂ OAc	Η	=0	215.3	37.8	25.0	26.4	44.5	48.7	19.9	22.7	26	0.1	63.2 1	71.0	20.9		
(+)-17c ^c)	CH ₂ OAc	Η	$CH_{2}=$	156.7	33.1	26.6 ^d)	27.5 ^d)	43.9	39.4	22.0	26.2	56	9.1	63.9 1	71.1	21.0		105.9
(+)-17d ^c)	CH ₂ OH	Η	$CH_{2}=$	157.0	33.2	26.8 ^d)	27.7 ^d)	43.7	39.4	22.0	26.2	33	3.4	62.2				105.7
(+)- 18 ^c)	СНО	Η	$CH_{2}=$	155.6	32.9	28.6	26.2	41.3	39.1	22.5	26.4	4	5.6	202.7				106.6
(-)-19a ^c)	CH_2OH	Η	Н	138.9	124.0	25.4	24.2	40.3	34.6	23.2	28.9	33	4)	61.9				
(-)- 19 b	CH ₂ OAc	Η	Me	140.9	121.6	24.9	23.7	41.5	37.1	21.4	26.0	23	<u>, -</u>	64.0 1	71.2	21.0		19.3
(-)- 19c °)	CH_2OH	Η	Me	141.1	121.6	25.1	23.9	41.2	37.1	21.4	26.0	33	3.3	62.2				19.3
$(-)-20a^{c})$	CHO	Н	Η	124.2	138.0	24.9	25.0	38.3	34.2	23.6	29.0	4	4.6	202.9				
$(-)-20b^{c})$	CHO	Η	Me	140.3	121.7	24.4	24.7	39.2	36.8	22.0	26.4	4	4.3	203.2				19.3
 ^a) Numb ^b) cis/tra ^c) 2D Ex ^d) Interch 	pering accordio ms relative to periments: CC hangeable.	ng to B the R ¹ (JSY ar	; systems CH ₂ side id C,H α	atic nam chain. orrelatio	es in the ns.	Exper. Pc	urt.											
!			Ì	ļ	ļ	Tab	ile 6. ¹³ C	-NMR	Data of ((−)-5a-d	md 6							
	$R(R^1, R^2)$		C(1) (C(2)	C(3)	C(4)	C(5)	C(6)	Me_{exo}	-C(6) M	feendo-C(6)	C(7)	R(R ¹ ,F	ر ²)				
(-)-5a ^a)	CH ₂ =CH		42.2	56.1	211.8	44.6	38.1	39.2	26.4	5(0.0	29.8	135.0	116	5.5			
(-)-5b	Et		41.1	53.7	214.8	44.6	38.2	39.2	26.6	1	6.6	29.2	22.5	12	1.			
$(-)-5c^{a}$	(CH ₂) ₂ CON	Иe	42.6	50.8	214.3	44.7	38.2	39.4	26.5	1	6.6	29.3	24.1	41	.6 2	08.4	29.9	
(-)-5d ^a)	(CH ₂) ₃ CO ₂	Me	41.6	51.7	214.2	44.5	38.1	39.3	26.5	1	6.6	29.2	29.0	22	6.	34.0	73.8	51.5
(+)-(E)-6	Me, H(E)		41.9	142.5	199.7	42.6	38.5	40.7	26.3	21	4	32.3	129.9	12	×.			
9- (<i>Z</i>)-(+)	H,Me(Z)		50.6	141.0	201.9	43.9	38.4	40.8	26.1	5	.5	32.6	135.5	12	4.			
^a) 2D Ex ₁	periments: C(JSY an	d C,H c	orrelatic	ns.													

Helvetica Chimica Acta – Vol. 75 (1992)

(-)-(1 R)-2-(Ethoxymethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene ((-)-**2n**). To a suspension of NaH (14.8 g 80% in mineral oil; 0.49 mol) in THF (800 ml) was added dropwise a soln. of (-)-myrtenol (= (-)-6.6-dimethylbicyclo[3.1.1]hept-2-ene-2-methanol; 50 g, 0.329 mol; $\alpha_D^{20} = -47.5$) in THF (200 ml). When the evolution of H₂ had ceased, EtBr (53.7 g, 0.49 mol) was added dropwise and the mixture stirred overnight at r.t., before being quenched with H₂O (50 ml). The mixture was washed successively with 10% aq. HCl soln., H₂O and brine, dried (Na₂SO₄), and evaporated. The crude oil (61 g) was distilled over a 15-cm column packed with helices to give (-)-**2n** (43.8 g, 0.24 mol; 74%). Colourless oil. B.p. 30°/0.018 Torr. $\alpha_D^{20} = -28.4$. IR: 2950, 2900, 1080. ¹H-NMR: 0.84 (s, 3 H); 1.19 (d, J = 7, 1 H); 1.20 (t, J = 7, 3 H); 1.29 (s, 3 H); 2.10 (m, 1 H); 2.17 (t, J = 5, 1 H); 2.27 (m, 2 H); 2.40 (dt, J = 8, 5, 1 H); 3.44 q, J = 7, 2 H); 3.83 (s, 2 H); 5.47 (br. s, 1 H). ¹³C-NMR: Table 1. MS: 180 (1, M^{++}), 136 (20), 119 (43, 91 (100), 79 (28), 59 (77), 41 (23).

(-)-(1 R, 2 R, 3 S)-2,3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane ((-)-3a). Obtained in 35 % yield from (-)-2a according to *Procedure A*. M.p. 37-39° (petroleum ether). [α]_D²⁰ = -91.8 (c = 5.8, CHCl₃). IR: 2890, 1400, 1250, 980, 860. ¹H-NMR: 0.98 (s, 3 H); 1.21 (d, J = 7, 1 H); 1.99 (s, 3 H); 1.70 (m, 2 H); 1.97 (m, 2 H); 2.20 (m, 1 H); 3.23 (t, J = 4, 1 H). ¹³C-NMR: *Table 2*. MS: 138 (1, M⁺⁺), 123 (19), 105 (18), 95 (47), 79 (28), 67 (100), 55 (28), 41 (65), 39 (44).

(-)- α -*Pinene Epoxide* ((-)-**3b**). Obtained in 78% yield from (-)-**2b** according to *Procedure A*. B.p. 102°/50 Torr. [α]_D²⁰ = -103.9 (c = 4.1, CHCl₃). IR: 2930, 1440, 1385, 1095, 850. ¹H-NMR: 0.95 (s, 3 H); 1.3 (s, 3 H); 1.35 (s, 3 H); 1.61 (d, J = 8, 1 H); 1.73 (m, 1 H); 1.97 (m, 4 H); 3.08 (d, J = 4, 1 H). ¹³C-NMR: *Table 2*. MS: 152 (5, M⁺), 137 (20), 119 (22), 108 (88), 93 (67), 83 (52), 67 (100), 55 (51), 41 (76).

(-)-(1 R, 2 R)-2,3-Epoxy-2-ethyl-6,6-dimethylbicyclo[3.1.1]heptane ((-)-3c). Obtained in 86% yield from (-)-2c according to *Procedure A*. B.p. 65°/7.6 Torr. $\alpha_D^{20} = -99.7$. IR: 2950, 1460, 1360, 1270, 905, 860. ¹H-NMR: 0.88 (t, J = 7, 3 H); 0.91 (s, 3 H); 1.19 (s, 3 H); 1.58 (m, 1 H); 1.63 (d, J = 7, 1 H); 1.78 (m, 2 H); 1.88 (m, 1 H); 2.00 (m, 3 H); 3.14 (d, J = 4, 1 H). ¹³C-NMR: *Table 2*. MS: 166 (1, M^+), 151 (28), 137 (19), 123 (40), 109 (39), 97 (39), 81 (100), 67 (72), 57 (47), 41 (70).

(-)-(1 R, 2 R)-2,3-Epoxy-6,6-dimethyl-2-propylbicyclo[3.1.1] heptane ((-)-3d). Obtained in 93% yield from (-)-2d according to Procedure A. B.p. 100°/0.2 Torr. $\alpha_D^{2D} = -90.13$. IR: 2940, 1470, 860. ¹H-NMR: 0.91 (t, J = 7, 3 H); 0.93 (s, 3 H); 1.29 (s, 3 H); 1.4 (m, 3 H); 1.62 (d, J = 8, 1 H); 1.73 (m, 2 H); 1.90 (m, 1 H); 2.0 (m, 3 H); 3.11 (d, J = 4, 1 H). ¹³C-NMR: Table 2. MS: 180 ($3, M^+$), 165 (13), 147 (14), 136 (23), 121 (20), 111 (31), 107 (55), 95 (67), 91 (56), 81 (46), 69 (82), 55 (65), 41 (100).

(-)-(1 R, 2 R)-2-Butyl-2,3-epoxy-6,6-dimethylbicyclo[3.1.1]heptane ((-)-3e). Obtained in 88% yield from (-)-2e according to Procedure A. B.p. 144°/0.1 Torr. $\alpha_D^{20} = -70.9$. IR: 2940, 1465, 865. ¹H-NMR: 0.89 (t, J = 7, 3 H); 0.93 (s, 3 H); 1.29 (s, 3 H); 1.32 (m, 3 H); 1.42 (m, 2 H); 1.62 (d, J = 8, 1 H); 1.73 (m, 2 H); 1.89 (m, 1 H); 2.00 (m, 3 H); 3, 11 (d, J = 4, 1 H). ¹³C-NMR: Table 2. MS: 194 (4, M^{++}), 176 (8), 161 (6), 150 (20), 131 (18), 125 (32), 108 (78), 95 (62), 91 (48), 81 (49), 69 (100), 55 (61), 41 (57).

(-)-(1 R, 2 R)-2,3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane-2-ethanol ((-)-**3f**). Obtained in 86% yield from (-)-**2f** according to Procedure A. B.p. 82°/0.01 Torr. $\alpha_{D}^{20} = -98$. IR: 3300, 2960, 2900, 1460, 1160, 850. ¹H-NMR: 0.93 (s, 3 H); 1.30 (s, 3 H); 1.62 (d, J = 8, 1 H); 1.77 (m, 1 H); 1.80 (t, J = 7, 1 H); 1.84 (t, J = 7, 1 H); 1.94 (m, 1 H); 2.05 (m, 3 H); 2.63 (br. s, OH); 3.35 (d, J = 4, 1 H); 3.69 (t, J = 7, 2 H). ¹³C-NMR: Table 2. MS: 182 (0, M^{++}), 164 (7), 149 (12), 138 (20), 121 (43), 107 (56), 95 (56), 91 (75), 79 (69), 67 (61), 55 (55), 41 (100).

(-)-(1 R, 2 R)-2,3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane-2-ethyl Acetate ((-)-3g). Obtained in 83% yield from (-)-2g according to Procedure A. B.p. 52°/0.05 Torr. $\alpha_D^{20} = -77.4$. IR: 2900, 1720, 1430, 1360, 1240, 1030, 860. ¹H-NMR: 0.95 (s, 3 H); 1.3 (s, 3 H); 1.63 (d, J = 8, 1 H); 1.75 (m, 1 H); 1.86 (m, 1 H); 1.92 (m, 1 H); 2.04 (s, 3 H); 2.05 (m, 4 H); 3.16 (d, J = 4, 1 H); 4.06 (m, 1 H); 4.36 (m, 1 H). ¹³C-NMR: Table 2. MS: 224 (0, M^{++}), 181 (3), 164 (8), 149 (20), 131 (24), 120 (67), 105 (43), 95 (40), 79 (30), 67 (32), 55 (28), 43 (100).

(-)-(1 R, 2 R)-2,3-Epoxy-2-(2-methoxyethyl)-6,6-dimethylbicyclo[3.1.1]heptane ((-)-**3h**). Obtained in 87% yield from (-)-**2h** according to *Procedure A*. B.p. 85°/10 Torr. $\alpha_D^{20} = -84$. IR: 2970, 2910, 1460, 1120. ¹H-NMR: 0.95 (s, 3 H); 1.30 (s, 3 H); 1.62 (d, J = 8, 1 H); 0.72 (m, 1 H); 1.82 (m, 1 H); 1.90 (m, 1 H); 2.01 (m, 4 H); 3.15 (d, J = 4, 1 H); 3.30 (s, 3 H); 3.42 (t, J = 7, 2 H). ¹³C-NMR: *Table 2*. MS: 196 (1, M^{+}), 181 (4), 152 (12), 121 (15), 107 (41), 94 (41), 91 (30), 79 (25), 67 (20), 55 (18), 45 (100), 41 (33).

(-)-(1 R, 2R)-2, 3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane-2-ethyl 4-Toluenesulfonate ((-)-3i). Obtained in 85% yield from (-)-2i according to Procedure A. $\alpha_D^{20} = -67.4$ (c = 1.8, CCl₄). IR (CCl₄): 2900, 1360, 1180, 1160, 850. ¹H-NMR (CCl₄): 0.92 (s, 3 H); 1.28 (s, 3 H); 1.56 (m, 1 H); 1.69 (m, 1 H); 1.8-1.96 (m, 5 H); 2.03 (m, 1 H); 2.45 (s, 3 H); 3.00 (d, J = 4, 1 H); 3.95 (m, 2 H); 7.3 (d, J = 7, 2 H); 7.71 (d, J = 7, 2 H). ¹³C-NMR: Table 2. MS: 336 (0, M^+), 200 (5), 182 (10), 164 (18), 131 (47), 121 (55), 105 (98), 91 (100), 79 (69), 43 (87).

(-)-(1R,2R)-2,3-Epoxy-6,6-dimethyl-2-vinylbicyclo[3.1.1]heptane ((-)-3j). Obtained in 37% yield from (-)-2j according to Procedure A. B.p. 64°/8 Torr. [α]_D²⁰ = -116.2 (c = 4, CHCl₃). IR: 3100, 2900, 1640, 1460, 1380,

1360, 1260, 910, 860. ¹H-NMR: 0.89 (*s*, 3 H); 1.34 (*s*, 3 H); 1.70 (*d*, J = 8, 1 H); 0.77 (*m*, 1 H); 1.96 (*m*, 1 H); 2.08 (*m*, 2 H); 2.34 (*t*, J = 7, 1 H); 3.17 (*d*, J = 4, 1H); 5.24 (*d*, J = 11, 1 H); 5.26 (*d*, J = 18, 1 H); 5.74 (*dd*, J = 11, 18, 1 H). ¹³C-NMR: *Table 2*. MS: 164 (3, $M^{+\cdot}$), 149 (16), 131 (7), 121 (37), 105 (21), 93 (27), 79 (58), 67 (36), 55 (41), 41 (100), 39 (95).

(-)-(1' R, 2' R)-4-(2', 3'-Epoxy-6', 6'-dimethylbicyclo[3.1.1]hept-2'-yl)butan-2-one ((-)-**3k**). Obtained in 90 % yield from (-)-**2k** according to *Procedure A*. B.p. 100°/1 Torr. $\alpha_D^{20} = -71.6$. IR: 2900, 1715, 1420, 1350, 1160, 925, 865. ¹H-NMR: 0.94 (s, 3 H); 1.29 (s, 3 H); 1.60 (d, J = 8, 1 H); 1.77 (m, 2 H); 1.90 (m, 1 H); 2.03 (m, 4 H); 2.16 (s, 3 H); 2.48 (m, 2 H); 3.09 (d, J = 4, 1 H). ¹³C-NMR: *Table 2*. MS: 208 (2, M^{++}), 193 (4), 165 (9), 150 (8), 135 (9), 107 (12), 95 (11), 81 (18), 67 (15), 55 (12), 43 (100).

(-)-Ethyl (1R,2R)-2,3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane-2-propanoate ((-)-31). Obtained in 82% yield from (-)-21 according to Procedure A. $\alpha_{20}^{20} = -63$. IR: 2950, 2900, 1720, 1460, 1440, 1360, 1160. ¹H-NMR: 0.94 (s, 3 H); 1.25 (t, J = 7, 3 H); 1.30 (s, 3 H); 1.61 (m, 1 H); 1.76 (m, 1 H); 1.87 (m, 2 H); 2.00 (m, 3 H); 2.10 (m, 1 H); 2.32 (m, 2 H); 3.12 (d, J = 4, 1 H); 4.13 (q, J = 7, 2 H). ¹³C-NMR: Table 2. MS: 238 (1, M^{+}), 220 (9), 205 (10), 194 (41), 169 (29), 149 (49), 131 (63), 121 (71, 107 (95), 95 (77), 91 (90), 79 (90), 79 (68), 55 (84), 41 (100).

(-)-(1 R, 2S)-2,3-Epoxy-2-(methoxymethyl)-6,6-dimethylbicyclo[3.1.1]heptane ((-)-**3m**). Obtained in 68 % yield from (-)-**2m** according to *Procedure A*. B.p. 31°/0.19 Torr. $\alpha_{D}^{2D} = -84$. IR: 2950, 2790, 1450, 1180, 1100. ¹H-NMR: 0.94 (s, 3 H); 1.31 (s, 3 H); 1.68 (d, J = 8, 1 H); 1.76 (m, 1 H); 1.93 (m, 1 H); 2.05 (m, 2 H); 2.15 (t, J = 5, 1 H); 5.26 (d, J = 4, 1 H); 3.33 (d, J = 11, 1 H); 3.37 (s, 3 H); 3.69 (d, J = 11, 1 H); ¹³C-NMR: *Table 2*. MS: 182 (2, M^{++}), 164 (5), 150 (30), 138 (35), 123 (53), 107 (58), 91 (100), 81 (68), 67 (46), 55 (37), 45 (94), 41 (70).

(-)-(1 R, 2S)-2,3-Epoxy-2-(ethoxymethyl)-6,6-dimethylbicyclo[3.1.1]heptane ((-)-3n). Obtained in 79% yield from (-)-2n according to *Procedure A*. B.p. 40°/0.18 Torr. $\alpha_D^{20} = -79.5$. IR: 2940, 2900, 2850, 1460, 1430, 1260, 1100, 1080, 850. ¹H-NMR: 0.94 (s, 3 H); 1.19 (t, J = 7, 3 H); 1.31 (s, 3 H); 1.68 (t, J = 8, 1 H); 1.75 (m, 1 H); 1.92 (m, 1 H); 2.04 (m, 2 H); 2.18 (m, 1 H); 3.24 (d, J = 4, 1 H); 3.37 (d, J = 14, 1 H); 5.50 (m, 2 H); 3.73 (d, J = 14, 1 H). ¹³C-NMR: *Table 2*. MS: 196 ($2, M^{++}$), 181 (6), 150 (35), 137 (40), 127 (23), 119 (24), 107 (62), 91 (100), 81 (85), 67 (40), 55 (41), 41 (68).

(-)-Methyl (1R,2R)-2,3-Epoxy-6,6-dimethylbicyclo[3.1.1]heptane-2-butanoate ((-)-30). Obtained in 93% yield from (-)-20 according to Procedure A. B.p. 120°/0.4 Torr. $\alpha_D^{20} = -73.7$. IR: 2920, 1735, 1430, 1160. ¹H-NMR: 0.92 (s, 3 H); 1.30 (s, 3 H); 1.48 (m, 1 H); 1.61 (d, J = 9, 1 H); 1.72 (m, 4 H); 1.90 (m, 1 H); 2.02 (m, 3 H); 2.23 (t, J = 7, 2 H); 3.12 (d, J = 4, 1 H); 3.67 (s, 3 H). ¹³C-NMR: Table 2. MS: 238 (3, M^+), 194 (27), 163 (38), 137 (67), 121 (68), 107 (67), 95 (100), 91 (77), 79 (77), 67 (86), 55 (82), 41 (97).

(+)-(1 R)-2,2-Dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4a). Obtained in 75% yield from (-)-3a according to Procedure B. B.p. 71°/15 Torr. $\alpha_D^{20} = +18.2$. IR: 2920, 1720. ¹H-NMR: 0.85 (s, 3 H); 1.09 (s, 3 H); 2.03 (m, 1 H); 2.27 (m, 1 H); 2.38 (m, 1 H); 2.57 (m, 2 H); 5.57 (m, 2 H); 9.82 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 138 (11, M^{++}), 123 (6), 105 (10), 94 (100), 79 (73), 67 (41), 55 (20), 39 (33).

(+)-(1 R)-2,2-3-Trimethylcyclopent-3-ene-1-acetaldehyde ((+)-4b). Obtained in 75% yield from (-)-3b according to *Procedure B*. B.p. 59°/9 Torr. $\alpha_D^{20} = +9.4$. IR: 2940, 1710, 1450. ¹H-NMR: 0.8 (s, 3 H); 1.01 (s, 3 H); 1.63 (s, 3 H); 1.90 (m, 1 H); 2.3 (m, 1 H); 2.4 (m, 2 H); 2.53 (m, 1 H); 5.24 (s, 1 H); 9.8 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 152 (2, M^{++}), 137 (3), 105 (10), 119 (5), 108 (100), 93 (62), 67 (27), 41 (20).

(+)-(1 R)-3-Ethyl-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4c). Obtained in 64% yield from (-)-3c according to Procedure B from a 87:13 mixture of (+)-4c and (-)-5b. B.p. 66°/4.6 Torr. [α]_D²⁰ = +1.52 (c = 2.1, CHCl₃). IR: 2900, 1700, 1460, 1400, 1380, 1200, 1150, 1040. ¹H-NMR: 0.8 (s, 3 H); 1.0 (s, 3 H); 1.08 (t, J = 7, 3 H); 1.93 (m, 3 H); 2.28 (m, 1 H); 2.4 (m, 2 H); 2.53 (m, 1 H); 5.24 (br. s, 1 H); 9.81 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 166 (1, M^{+}), 122 (77), 107 (100), 95 (16), 91 (21), 81 (20), 67 (17), 55 (12), 41 (29).

(+)-(1 R)-2,2-Dimethyl-3-propylcyclopent-3-ene-1-acetaldehyde ((+)-4d). Obtained in 70% yield from (-)-3d according to Procedure B. B.p. 85°/0.1 Torr. $\alpha_D^{20} = +4.2$. IR: 2960, 1725, 1465. ¹H-NMR: 0.8 (s, 3 H); 0.95 (t, J = 7, 3 H); 1.0 (s, 3 H); 1.52 (m, 2 H); 1.89 (m, 3 H); 2.25 (m, 1 H); 2.4 (m, 2 H); 2.53 (m, 1 H); 5.24 (br. s, 1 H); 9.8 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 180 (1, M⁺⁺), 136 (41), 107 (100), 95 (33), 81 (26), 67 (22), 55 (19), 41 (37).

(+)-(1 R)-3-Butyl-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4e). Obtained in 72% yield from (-)-3e according to *Procedure B*. B.p. 90°/0.1 Torr. $[\alpha]_{D}^{20} = +6.6$ (c = 2.6, CCl₄). IR: 2950, 1720, 1460, 1360. ¹H-NMR: 0.80 (s, 3 H); 0.92 (t, J = 7, 3 H); 1.01 (s, 3 H); 1.35 (m, 3 H); 1.46 (m, 2 H); 1.91 (m, 2 H); 2.27 (m, 1 H); 2.24 (m, 2 H); 2.53 (m, 1 H); 5.25 (br. s, 1 H); 9.8 (t, J = 2, 1 H). ¹³C-NMR: *Table 3*. MS: 194 (0, M^{++}), 150 (27), 135 (8), 121 (7), 108 (100), 95 (29), 81 (17), 67 (13), 55 (13), 41 (25).

(+)-(1 R)-3-(2-Hydroxyethyl)-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4f). Obtained in 61% yield from (-)-3f according to *Procedure B*. A soln. of LiOH \cdot H₂O (210 g, 5 mol) and (+)-4g (120 g, 0.51 mol) in H₂O (480 ml) and THF (600 ml) was vigorously stirred for 48 at r.t. The mixture was extracted with Et₂O (3 × 150 ml) and successively washed with H₂O and brine, dried (Na₂SO₄), and evaporated. Purification of the oil on a short

column (SiO₂, cyclohexane/AcOEt 85:15) gave (+)-4f (74.6 g, 80%). Colourless oil. $[\alpha]_D^{20} = +6.4$ (c = 2.1, CHCl₃). IR: 3350, 2900, 1720, 1040. ¹H-NMR: 0.78 (s, 3 H); 1.03 (s, 3 H); 1.80 (br. s, OH); 1.95 (m, 1 H); 2.25 (m, 3 H); 2.30 (m, 1 H); 2.40 (m, 1 H); 2.53 (m, 1 H); 3.80 (m, 2 H); 5.37 (br. s, 1 H); 9.80 (t, J = 2, 1 H). ¹³C-NMR: *Table 3*. MS: 182 (0, M^{++}), 138 (43), 120 (20), 107 (100), 94 (50), 91 (45), 79 (33), 67 (18), 55 (16), 41 (30).

(+)-(4 R)-5,5-Dimethyl-4-(2-oxoethyl) cyclopent-1-ene-1-ethyl Acetate ((+)-4g). Obtained in 69% yield from (-)-3g according to Procedure B. B.p. 77°/0.06 Torr. $\alpha_{20}^{D} = +6.1$. IR: 3920, 1720, 1450, 1370, 1220, 1020, 800. ¹H-NMR: 0.81 (s, 3 H); 1.03 (s, 3 H); 1.93 (m, 1 H); 2.05 (s, 3 H); 2.28 (m, 3 H); 2.38 (m, 1 H); 2.45 (m, 1 H); 2.55 (m, 1 H); 4.21 (t, J = 7, 2 H); 5.33 (br. s, 1 H); 9.81 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 224 (0, M⁺), 120 (100), 105 (58), 91 (17), 79 (12), 43 (49).

(+)-(1 R)-3-(2-Methoxyethyl)-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-**4h**). Obtained in 65% yield from (-)-**3h** according to *Procedure B*. $\alpha_D^{20} = +8.1$. IR: 2960, 1725, 1460, 1120. ¹H-NMR: 0.81 (s, 3 H); 1.02 (s, 3 H); 1.94 (m, 2 H); 2.22 (m, 2 H); 2.30 (m, 1 H); 2.40 (m, 1 H); 2.55 (m, 1 H); 3.37 (s, 3 H); 3.55 (dt, J = 2, 7, 2 H); 5.30 (br. s, 1 H); 9.80 (t, J = 2, 1 H). ¹³C-NMR: *Table 3*. MS: 196 (0, M^{++}), 152 (33), 120 (20), 107 (91), 94 (100), 91 (31), 79 (26), 45 (95), 41 (23).

(+)-(4 R)-5,5-Dimethyl-4-(2-oxoethyl) cyclopent-1-ene-1-ethyl 4-Toluenesulfonate ((+)-4i). To a soln. of TsCl (16.3 g, 85.6 mmol) in pyridine (26 ml) was added dropwise at -10° (+)-4f (11.4 g, 62.6 mmol). After 30 min, stirring was stopped and the mixture kept overnight at -10° before dilution with Et₂O (150 ml). The mixture was successively washed with 15% aq. HCl soln., sat. aq. NaHCO₃ soln., H₂O, and brine, dried (Na₂SO₄), and evaporated: unstable (+)-4i (18.3 g, 87%). $[\alpha]_{D}^{20} = +4.6$ (c = 1.8, CHCl₃). IR: 3000, 2900, 2700, 1700, 1580, 1440, 1340, 1160, 1080. ¹H-NMR: 0.75 (s, 3 H); 0.95 (s, 3 H); 1.87 (m, 1 H); 2.22 (m, 2 H); 2.30 (m, 2 H); 2.37 (m, 1 H); 2.46 (s, 3 H); 2.51 (m, 1 H); 4.16 (dt, J = 2, 7, 2 H); 5.21 (br. s, 1 H); 7.36 (d, J = 7, 2 H); 7.79 (d, J = 7, 2 H); 9.79 (t, J = 2, 1 H). ¹³C-NMR: Table 3.

(+)-(1 R)-2,2-Dimethyl-3-vinylcyclopent-3-ene-1-acetaldehyde ((+)-4j). Isolated by prep. GLC in 10% yield from a 16:64:20 mixture (+)-4j/(-)-5a/(+)-(Z)-6, obtained after isomerisation of (-)-3j according to Procedure B. $\alpha_{20}^{D} = +2.3$. IR: 2900, 2720, 1730. ¹H-NMR: 0.92 (s, 3 H); 1.15 (s, 3 H); 1.98 (m, 1 H); 2.34 (m, 1 H); 2.45 (m, 1 H); 2.45 (m, 2 H); 2.58 (m, 1 H); 5.04 (d, J = 10, 1 H); 5.40 (d, J = 17, 1 H); 5.71 (br. s, 1 H); 6.22 (dd, J = 10, 17, 1 H). MS: 164 (6, M^{+}), 120 (94), 105 (100), 91 (34), 79 (33), 65 (11), 55 (12), 39 (64).

(+)-(1 R)-2,2-Dimethyl-3-(3-oxobutyl) cyclopent-3-ene-1-acetaldehyde ((+)-4k). Obtained in 35% yield from (-)-3k according to Procedure B from a 24:76 mixture (-)-5c/(+)-4k. B.p. 75°/0.03 Torr. $\alpha_D^{20} = +7.4$. IR: 2900, 1710, 1360, 1160. ¹H-NMR: 0.81 (s, 3 H); 1.03 (s, 3 H); 1.90 (m, 1 H); 2.18 (s, 3 H); 2.20 (m, 2 H); 2.28 (m, 1 H); 2.40 (m, 1 H); 2.45 (m, 1 H); 2.54 (m, 1 H); 2.64 (t, J = 7, 2 H); 5.18 (br. s, 1 H); 9.81 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 208 (1, M^{+}), 164 (51), 135 (12), 121 (52), 106 (66), 91 (31), 43 (100).

(+)-Ethyl (4R)-5,5-Dimethyl-4-(2-oxoethyl) cyclopent-1-ene-1-propanoate ((+)-4I). Obtained in 67% yield from (-)-3I according to Procedure B. [α]_D²⁰ = +2.5 (c = 3.0, CCl₄). IR: 2940, 1720, 1150. ¹H-NMR: 0.82 (s, 3 H); 1.04 (s, 3 H); 1.26 (t, J = 7, 3 H); 1.90 (m, 1 H); 2.26 (m, 3 H); 2.35 (m, 1 H); 2.41 (m, 2 H); 2.50 (m, 2 H); 4.14 (q, J = 7, 2 H); 5.24 (s, 1 H); 9.80 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 238 (0, M⁺⁺), 194 (56), 149 (19), 135 (19), 121 (72), 107 (100), 91 (51), 79 (30), 55 (30), 41 (30).

(+)-(1 R)-3-(Methoxymethyl)-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4m). Obtained in 58% yield from (-)-3m according to Procedure B. B.p. 44°/0.15 Torr α_D^{20} = +15.9. IR: 2900, 1700, 1440, 1350, 1080. ¹H-NMR: 0.89 (s, 3 H); 1.07 (s, 3 H); 1.97 (m, 1 H); 2.35 (m, 1 H); 2.43 (m, 1 H); 2.54 (m, 2 H); 3.33 (s, 3 H); 3.94 (s, 2 H); 5.59 (s, 1 H); 9.81 (t, J = 0.5, 1 H). ¹³C-NMR: Table 3. MS: 182 (1, M⁺⁺), 167 (5), 150 (62), 138 (68), 123 (97), 106 (79), 91 (100), 79 (53), 67 (28), 45 (57).

(+)-(1 R)-3-(Ethoxymethyl)-2,2-dimethylcyclopent-3-ene-1-acetaldehyde ((+)-4n). Obtained in 53% yield from (-)-3n according to Procedure B. B.p. 52°/0.15 Torr. $\alpha_{D}^{20} = +12.9$. IR: 2920, 2840, 1705, 1080. ¹H-NMR: 0.90 (s, 3 H); 1.08 (s, 3 H); 1.22 (t, J = 7, 3 H); 1.98 (m, 1 H); 2.35 (m, 1 H); 2.42 (m, 1 H); 2.54 (m, 2 H); 3.49 (q, J = 7, 2 H); 3.98 (s, 2 H); 5.60 (br. s, 1 H); 9.81 (t, J = 1, 1 H). ¹³C-NMR: Table 3. MS: 196 (1, M⁺⁺), 181 (7), 150 (60), 137 (57), 106 (72), 91 (100), 79 (60), 67 (40), 53 (37), 41 (65).

(+)-Methyl (4 R)-5,5-Dimethyl-4-(2-oxoethyl) cyclopent-1-ene-1-butanoate ((+)-40). Obtained in 64% yield from (-)-30 according to Procedure B from a 85:15 mixture (+)-40/(-)-5d. B.p. 140°/0.3 Torr. $\alpha_{D}^{20} = +9.8$. IR: 2950, 1720, 1420, 1350, 1200. ¹H-NMR: 0.80 (s, 3 H); 1.00 (s, 3 H); 1.84 (m, 2 H); 1.94 (m, 3 H); 2.30 (m, 1 H); 2.36 (t, J = 7, 2 H); 2.40 (m, 1 H); 2.50 (m, 2 H); 3.68 (s, 3 H); 5.28 (br. s, 1 H); 9.81 (t, J = 3, 1 H). ¹³C-NMR: Table 3. MS: 238 (0, M^+), 194 (68), 120 (94), 107 (100), 91 (53), 79 (42), 67 (26), 59 (21), 55 (33), 41 (38).

(-)-(1S,2R)-6,6-Dimethyl-2-vinylbicyclo[3.1.1]heptan-3-one ((-)-5a). Obtained in 53% yield during the attempted preparation of (+)-4j from (-)-3j according to Procedure B. Purified by chromatography (SiO₂, cyclohexane/AcOEt 9:1). $\alpha_D^{20} = -49.5$. IR: 2920, 1710, 1640, 1460, 1400, 1035, 910. ¹H-NMR: 0.93 (s, 3 H); 1.27 (d, J = 8, 1 H); 1.37 (s, 3 H); 2.14 (m, 1 H); 2.19 (dt, J = 2, 7, 1 H); 2.47 (m, 1 H); 2.53 (m, 1 H); 2.69 (m, 1 H); 3.27 (m,

1 H); 5.07 (d, J = 15, 1 H); 5.17 (d, J = 11, 1 H); 5.88 (ddd, J = 7, 11, 15, 1 H). ¹³C-NMR: *Table 6*. MS: 164 (3, M^{++}), 149 (2), 136 (3), 122 (11), 107 (9), 95 (34), 79 (30), 69 (58), 53 (14), 41 (100).

(-)-(1S,2R)-2-*Ethyl*-6,6-*dimethylbicyclo*[3.1.1]*heptan*-3-one ((-)-**5b**). Isolated in 6% yield during the purification of (+)-**4c**. [α]_D²⁰ = -12.6 (c = 1.1, CHCl₃). IR: 2950, 1700, 1200. ¹H-NMR: 0.89 (s, 3 H); 0.92 (t, J = 7, 3 H); 1.17 (d, J = 9, 1 H); 1.32 (m, 1 H); 1.35 (s, 3 H); 1.89 (m, 1 H); 2.10 (d, J = 5, 2 H); 2.35 (m, 1 H); 2.40 (d, J = 18, 1 H); 2.43 (m, 1 H); 2.63 (d, J = 18, 1 H). ¹³C-NMR: *Table 6*. MS: 166 (9, M^{++}), 97 (86), 81 (23), 69 (100), 55 (63), 41 (75).

(-)-(1S,2 R)-6,6-Dimethyl-2-(3-oxobutyl)bicyclo[3.1.1]heptan-3-one ((-)-**5**c). Isolated in 18% yield during the purification of (+)-**4k**. [α]_D²⁰ = -13 (c = 4.4, CHCl₃). IR: 2920, 1705, 1360, 1160. ¹H-NMR: 0.87 (s, 3 H); 1.20 (d, J = 8, 1 H); 1.34 (s, 3 H); 1.57 (m, 1 H); 2.00 (m, 2 H); 2.10 (m, 1 H); 2.16 (s, 3 H); 2.44 (m, 2 H); 2.60 (m, 4 H). ¹³C-NMR: Table 6. MS: 208 (9, M^+), 165 (5), 139 (20), 93 (10), 81 (11), 69 (14), 43 (100).

(-)-Methyl (1S,2R)-4-(3-Oxo-6,6-dimethylbicyclo[3.1.1]hept-2-yl)butanoate ((-)-5d). Isolated in 6% yield during the preparation of (+)-4o. $[\alpha]_{20}^{20} = -42.3$ (c = 1.3, CHCl₃). IR: 3040, 1730, 1705, 1455, 1425, 1360, 1160. ¹H-NMR: 0.89 (s, 3 H); 1.17 (d, J = 9, 1 H); 1.35 (s, 3 H); 1.36 (m, 1 H); 1.60 (m, 1 H); 1.70 (m, 1 H); 1.80 (m, 1 H); 2.10 (m, 2 H); 2.32 (q, J = 7, 2 H); 2.35 (m, 1 H); 2.45 (m, 1 H); 2.47 (m, 1 H); 2.63 (m, 1 H); 3.67 (s, 3 H). ¹³C-NMR: Table 6. MS: 238 (d, M^+), 207 (d), 169 (d8), 137 (35), 109 (d0), 95 (100), 81 (d4), 69 (77), 55 (29), 41 (d9).

(+)-(1 R, Z)-2-*Ethylidene*-6,6-*dimethylbicyclo*[3.1.1]*heptan*-3-one ((+)-(Z)-6). Isolated by prep. GLC in 8% yield from a 16:64:20 mixture from (-)-3j according to *Procedure B*. $[\alpha]_{D}^{20}$ = +69.5 (c = 0.2, CHCl₃). IR: 2900, 1700, 1620, 1060. ¹H-NMR: 0.82 (s, 3 H); 1.25 (d, J = 7, 1 H); 1.35 (s, 3 H); 1.62 (s, 1 H); 2.15 (d, J = 7, 3 H); 2.45–2.65 (m, 4 H); 5.74 (q, J = 7, 1 H). ¹³C-NMR: *Table 6*. MS: 164 (10, M ⁺⁻), 149 (4), 121 (53), 95 (100), 67 (98), 41 (34).

(+)-(1 R, E)-2-Ethylidene-6,6-dimethylbicyclo[3.1.1]heptan-3-one ((+)-(E)-6). (-)-5a (400 mg, 2.44 mmol) was stirred at r.t. in a 5% soln. of MeONa/MeOH (20 ml) during 5 h. The solvent was then evaporated, the mixture diluted with H₂O (20 ml) and extracted with Et₂O (4 × 20 ml). The org. phase was successively washed with H₂O (4 × 20 ml) and brine, dried (Na₂SO₄), and evaporated: pure (+)-(E)-6 after bulb-to-bulb distillation (360 mg, 90%). [α]_D²⁰ = +71 (c = 5.5, CHCl₃). IR: 2900, 1700, 1620, 1440, 1280, 1230, 1060, 960, 830. ¹H-NMR: 0.80 (s, 3 H); 1.24 (d, J = 8, 1 H); 1.40 (s, 3 H); 1.70 (d, J = 7, 3 H); 2.20 (m, 1 H); 2.52 (dd, J = 3, 18, 1 H); 2.66 (m, 1 H); 2.70 (m, 1 H); 2.99 (t, J = 7, 1 H); 6.72 (q, J = 7, 1 H). ¹³C-NMR: Table 6. MS: 164 (32, M⁺⁻), 149 (5), 121 (32), 107 (19), 95 (100), 91 (13), 77 (15), 67 (98), 53 (12), 41 (77).

(-)-(1 R)-2-(2-Iodoethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene ((-)-7**a**). To a soln. of EtMgI (EtI (6.3 g, 40 mmol) and Mg (1 g, 41 mmol)) in Et₂O (50 ml) was added dropwise at 0° a soln. of (-)-2**i** (10 g, 31.2 mmol) in Et₂O (20 ml). After 1 h at r.t., the reaction was quenched with sat. aq. NH₄Cl soln. (35 ml), diluted with H₂O, and extracted with Et₂O (4 × 50 ml). The org. phases were successively washed with H₂O and brine, dried (Na₂SO₄), and evaporated. The crude oil (8.1 g) was purified by bulb-to-bulb distillation to give (-)-7**a** (7.98, 93%). Colourless oil. B.p. 130°/0.2 Torr. $\alpha_{20}^{20} = -27.1$. IR: 2940, 1470, 1440, 1370, 1240, 1180. ¹H-NMR: 0.84 (s, 3 H); 1.18 (d, J = 8, 1 H); 1.27 (s, 3 H); 2.00 (t, J = 5, 1 H); 2.08 (m, 1 H); 2.21 (m, 2 H); 2.37 (dt, J = 6, 8, 1 H); 2.54 (t, J = 7, 2 H); 3.14 (dt, J = 3, 8, 2 H); 5.30 (br. s, 1 H). ¹³C-NMR: Table 1. MS: 276 (1, M^+), 233 (3), 155 (18), 105 (100), 91 (20), 79 (18), 41 (15).

(-)-(1 R)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-propanol ((-)-7b). Obtained in 65% yield from (-)-21 according to the procedure used for (+)-14c. B.p. 68°/0.2 Torr. $\alpha_D^{20} = -41.2$. IR: 3300, 2900, 1460, 1440, 1350, 1050. ¹H-NMR: 0.84 (s, 3 H); 1.34 (d, J = 8, 1 H); 1.27 (s, 3 H); 1.55 (br. s, OH); 1.63 (m, 2 H); 2.02 (t, J = 7, 3 H); 2.08 (m, 1 H); 2.21 (m, 2 H); 2.37 (dt, J = 5, 8, 1 H); 3.64 (t, J = 7, 2 H); 5.22 (br. s, 1 H). ¹³C-NMR: Table 1. MS: 180 (4, M^+), 136 (12), 119 (25), 105 (17), 91 (100), 79 (23), 41 (21).

(-)-(1 R)-2-(3'-Methoxypropyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene ((-)-7c). Obtained in 72% yield from (-)-7b according to the procedure used for (-)-2n. B.p. $34^{\circ}/0.2$ Torr. $\alpha_{20}^{20} = -26.6$. IR: 2900, 1440, 1370, 1350, 1100. ¹H-NMR: 0.83 (s, 3 H); 1.14 (d, J = 8, 1 H); 1.27 (s, 3 H); 1.62 (m, 2 H); 1.99 (m, 3 H); 2.08 (m, 1 H); 2.21 (m, 2 H); 2.14 (dt, J = 5, 8, 1 H); 3.33 (s, 3 H); 3.37 (t, J = 7, 2 H); 5.20 (br. s, 1 H). ¹³C-NMR: Table 1. MS: 194 (1, M^+), 162 (4), 147 (8), 136 (20), 119 (32), 105 (17), 91 (100), 79 (20), 41 (18).

(-)-(1 R)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-propyl 4-Toluenesulfonate ((-)-7d). Obtained in 97% yield from (-)-7b according to the procedure used for (+)-4i. $[\alpha]_{D}^{20} = -18$ (c = 1.8, CHCl₃). IR: 2900, 1600, 1360, 1160, 950, 810. ¹H-NMR: 0.75 (s, 3 H); 1.04 (d, J = 8, 1 H); 1.24 (s, 3 H); 1.69 (m, 2 H); 1.95 (m, 3 H); 2.05 (m, 1 H); 2.15 (m, 2 H); 2.30 (dt, J = 5, 8, 1 H); 2.45 (s, 3 H); 4.01 (s, 2 H); 5.08 (br. s, 1 H); 7.35 (d, J = 8, 2 H); 7.79 (d, J = 8, 2 H). ¹³C-NMR: Table 1. MS: 334 (0, M^+), 198 (3), 190 (8), 155 (22), 119 (14), 91 (100), 79 (15), 65 (17), 41 (12).

(-)-(1 R)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-propanal ((-)-7e). Obtained in 82% yield from (-)-7b according to the procedure used for (-)-2k. B.p. 87°/4 Torr. $\alpha_D^{20} = -31.1$. IR: 2900, 1720. ¹H-NMR: 0.82 (s, 3 H); 1.14 (d, J = 8, 1 H); 1.27 (s, 3 H); 2.00 (t, J = 6, 1 H); 2.09 (m, 1 H); 2.21 (m, 2 H); 2.30 (m, 2 H); 2.36 (dt, J = 5, 8, 1 H); 1.27 (s, 3 H); 2.00 (t, J = 6, 1 H); 2.09 (m, 1 H); 2.21 (m, 2 H); 2.30 (m, 2 H); 2.36 (dt, J = 5, 8, 1 H); 2.36 (dt, J = 5, 1 H); 2.36 (dt, J = 5, 1 H); 2.36 (dt, J = 5, 1 H); 2.

1 H); 2.48 (*m*, 2 H); 5.22 (br. *s*, 1 H); 9.76 (*t*, J = 2, 1 H). ¹³C-NMR: *Table 1*. MS: 178 (2, M^+), 134 (15), 117 (22), 105 (17), 91 (100), 79 (21), 41 (21).

(-)-(1 R)-4-(6,6-Dimethylbicyclo[3.1.1]hept-2-enyl)butan-2-ol ((-)-8). To a suspension of Mg powder (350 mg, 14.6 mmol) in Et₂O (5 ml) under reflux was added dropwise a soln. of (-)-7a (4 g, 14.5 mmol) in Et₂O (15 ml). After disappearance of the Mg, a soln. of acetaldehyde (640 mg, 14.5 mmol) in Et₂O (5 ml) was added at 0° and the mixture stirred for 2 h at r.t. The reaction was quenched with sat. aq. NH₄Cl soln. (30 ml), diluted with H₂O (30 ml), and extracted with Et₂O (3 × 20 ml). The org. phase was successively washed with H₂O and brine, dried (Na₂SO₄), and evaporated. The crude oil (2.8 g) was purified by chromatography (SiO₂, 245 g, cyclohexane/AcOEI 9:1) to give (-)-8 (1.68 g, 60%; 1:1 mixture of diastereoisomers). Colourless oil. $[\alpha]_D^{20} = -26.84$ (c = 1.5, CCl₄). IR: 3300, 2900, 1200. ¹H-NMR: 0.82 (s, 1.5 H); 0.83 (s, 1.5 H); 1.04 (d, J = 8, 0.5 H); 1.05 (d, J = 8, 0.5 H); 1.18 (d, J = 7, 1.5 H); 1.28 (s, 3 H); 1.50 (m, 3 H); 2.02 (m, 2 H); 2.22 (m, 2 H); 2.36 (m, 1 H); 3.80 (m, 1H); 5.23 (s, 1 H). MS: isomer A: 194 (0, M^+), 136 (13), 119 (18), 105 (17), 91 (100), 79 (20), 43 (23); isomer B: 194 (0, M^+), 116 (4), 136 (13), 119 (15), 105 (20), 91 (100), 77 (18), 41 (20).

(-)-(1 R)-4-(6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2-methylbutan-2-ol ((-)-9). Obtained in 94% yield ($\alpha_D^{20} = -25.1$) from (-)-2k by a *Grignard* mono-addition. Obtained in 87% yield ($\alpha_D^{20} = -24.4$) from (-)-21 by a *Grignard* di-addition B.p. 50°/0.17 Torr. IR: 3300, 2960, 1480, 1400, 1380, 1220, 1160, 925. ¹H-NMR: 0.83 (s, 3 H); 1.05 (d, J = 8, 1 H); 1.22 (s, 6 H); 1.28 (s, 3 H); 1.51 (dt, J = 3, 5, 2 H); 2.01 (m, 4 H); 2.08 (m, 1 H); 2.22 (m, 2 H); 2.37 (dt, J = 5, 8, 1 H); 5.22 (br. s, 1 H). ¹³C-NMR: *Table 1*. MS: 208 (0, M^{+-}), 190 (4), 175 (7), 147 (12), 134 (16), 119 (35), 105 (30), 91 (100), 79 (18), 69 (16), 59 (15), 41 (24).

(-)-(1S,2R,6S,8S)-3,3,8-trimethyl-7,11-dioxatetracyclo[6.2.1.1^{2,4}.0^{1,6}]dodecane ((--)-11). A soln. of (-)-3k (2.08 g, 10 mmol) and TsOH (19 mg, 0.1 mmol) in cyclohexane (10 ml) was refluxed for 3 h. The crude soln. was passed through a chromatography column (SiO₂, 80 g, cyclohexane/AcOEt 9:1) to afford (-)-11 (1.62 g, 78%). $\alpha_{20}^{00} = -67.2$. IR: 2970, 1200. ¹H-NMR: 1.01 (s, 3 H); 1.35 (s, 3 H); 1.63 (s, 3 H); 1.57-2.1 (m, 1 H); 2.25-2.35 (m, 1 H); 4.12 (dd, J = 11, 4, 1 H). ¹³C-NMR: 18.9 (Me-C(8)); 24.2 (Me 'syn' to C(6)); 27.8 (Me 'anti' to C(6)); 29.7 (C(12)); 33.9 (C(5)); 35.2, 37.3 (C(9), C(10)); 39.6 (C(3)); 42.6 (C(4)); 46.2 (C(2)); 74.6 (C(6)); 90.0 (C(1)); 107.5 (C(8)). MS: 208 (4, M^{++}), 165 (8), 138 (41), 121 (12), 110 (51), 105 (47), 95 (36), 81 (25), 43 (100).

(+)-(1R,3S)-6,6-Dimethylspiro[bicyclo[3.1.1]heptane-2,1'-cyclopropan]-3-yl Acetate ((+)-12). When (-)-7a was treated according to Procedure A, (+)-12 was isolated (11%) beside (-)-2g (13%) and (-)-3g (9%) by chromatography (SiO₂, cyclohexane/AcOEt 4:1). $\alpha_D^{20} = +73.8$. IR: 2900, 1720, 1460, 1350, 1240, 1140, 1000. ¹H-NMR: 0.18 (m, 1 H); 0.4 (m, 1 H); 0.48 (m, 1 H); 0.71 (m, 1 H); 0.96 (s, 3 H); 1.09 (t, J = 5, 1 H); 1.21 (s, 3 H); 1.71 (d, J = 8, 1 H); 1.76 (dd, J = 3, 15, 1 H); 1.93 (m, 1 H); 1.97 (s, 3 H); 2.26 (m, 1 H); 2.41 (m, 1 H); 4.67 (d, J = 7, 1 H). ¹³C-NMR: 9.2 (C(2')); 16.1 (C(3')); 21.5 (MeCOO); 21.7 (Me_{endo}-C(6)); 25.4 (C(2)); 26.3 (Me_{exo}-C(6)); 27.7 (C(7)); 34.2 (C(4)); 39.8 (C(5)); 40.7 (C(6)); 50.6 (C(1)); 74.0 (C(3)); 170.7 (MeCOO). MS: 208 (0, M^+), 166 (6), 148 (25), 133 (43), 105 (91), 91 (40), 79 (30), 69 (25), 43 (100).

(+)-(1 R)-2,2-Dimethyl-3-methylidenecyclopentane-1-acetaldehyde ((+)-13). A soln. of (+)-4f (58 g, 0.32 mol) in toluene (160 ml) was passed (25 ml/h, N₂ 60 ml/min) through a 5-m Pyrex column at 480°. The condensed material was distilled through a 10-cm Vigreux column: (+)-13 (34.5 g, 71%). Colourless oil. B.p. 32°/0.08 Torr. $\alpha_D^{20} = +2.5$. IR: 2900, 1720, 1460, 1360, 880. ¹H-NMR: 0.85 (s, 3 H); 1.08 (s, 3 H); 1.35 (m, 1 H); 1.92 (m, 1 H); 2.05 (m, 1 H); 2.27 (m, 1 H); 2.37 (m, 1 H); 2.50 (m, 2 H); 4.80 (d, J = 7, 2 H); 9.81 (t, J = 2, 1 H). ¹³C-NMR: Table 3. MS: 152 (0, M^+), 119 (5), 108 (100), 93 (73), 81 (21), 67 (49), 53 (20), 41 (68), 39 (53).

(+)-2,2,3-Trimethylcyclopent-3-ene-1-ethanol ((+)-14a). Obtained in 97% yield from (+)-4b according to procedure used for (+)-14c. B.p. 97°/10 Torr. $\alpha_D^{20} = +4.57$, [α]_D²⁰ = +3.1 (c = 8, CCl₄). IR: 3300, 3040, 2950, 1460, 1440, 1050. ¹H-NMR: 0.78 (s, 3 H); 0.98 (s, 3 H); 1.55 (m, 1 H); 1.61 (s, 3 H); 1.73 (m, 1 H); 1.83 (m, 2 H); 2.0 (br. s, OH); 2.27 (m, 1 H); 3.67 (m, 2 H); 5.22 (br. s, 1 H). ¹³C-NMR: Table 4. MS: 154 (5, M^{++}), 139 (12), 136 (8), 121 (29), 105 (19), 95 (100), 93 (41), 79 (20), 67 (18), 41 (20).

(-)-(1 R)-2,2,3-Trimethylcyclopent-3-ene-1-ethyl Acetate ((-)-14b). Obtained in 87% yield from (+)-14a according to the procedure used for (-)-14d. B.p. 113°/12 Torr. $\alpha_D^{20} = -2.3$; $[\alpha]_D^{20} = -0.63$ (c = 8, CCl₄). IR: 2950, 1730, 1450, 1360, 1240, 1040. ¹H-NMR: 0.78 (s, 3 H); 0.99 (s, 3 H); 1.57 (m, 1 H); 1.61 (s, 3 H); 1.80 (m, 3 H); 2.06 (s, 3 H); 2.30 (m, 1 H); 4.10 (m, 2 H); 5.23 (br. s, 1 H). ¹³C-NMR: Table 4. MS: 196 (4, M^{+}), 136 (36), 121 (100), 108 (68), 93 (75), 79 (26), 43 (59).

(+)-(1 R)-3-Ethyl-2,2-dimethylcyclopent-3-ene-1-ethanol ((+)-14c). To a suspension of LiAlH₄ (40 g, 0.92 mol) in refluxing Et₂O (3 l) was added dropwise a soln. of (+)-4c (403 g, 2.43 mol) in Et₂O (1 l) during 2 h. After 1 h at r.t., the mixture was cooled to 0°, and H₂O (40 ml), 15% aq. NaOH soln. (40 ml), and then H₂O (120 ml) were cautiously added. After 30 min, the mixture was filtered over *Celite* and evaporated: crude oil (426 g). Distillation over a *Vigreux* column (30 cm) gave pure (+)-14c (327.8 g, 80%). B.p. 76°/5 Torr. α_{20}^{20} = +4.9. IR: 3400, 3000, 1490, 1090. ¹H-NMR: 0.78 (s, 3 H); 0.99 (s, 3 H); 1.06 (t, J = 7, 3 H); 1.53 (m, 1 H); 1.73 (m, 1 H); 1.77 (m, OH); 1.85 (m, 1

2 H); 1.94 (*m*, 2 H); 2.32 (*m*, 1 H); 3.67 (*m*, 2 H); 5.23 (br. *s*, 1 H). ¹³C-NMR: *Table 4*. MS: 168 (9, *M*⁺), 153 (11), 135 (18), 121 (18), 109 (100), 95 (43), 79 (22), 41 (21).

(-)-(1 R)-3-Ethyl-2,2-dimethylcyclopent-3-ene-1-ethyl Acetate ((-)-14d). A soln. of (+)-14c (325 g, 1.93 mol) in Ac₂O (800 ml) was heated at 60° during 2 h in the presence of conc. H₃PO₄ (2 ml). The cold soln. was then diluted with H₂O (500 ml). After 1 h, the mixture was neutralized with sat aq. Na₂CO₃ soln. and extracted with Et₂O (3 × 200 ml). The org. phase was successively washed with H₂O and brine, dried (Na₂SO₄), and evaporated: crude oil (406 g). This oil was distilled using a 40-cm helices-packed column: (-)-14d (335 g, 83%). Colourless oil. B.p. 90°/3 Torr. $\alpha_{2D}^{20} = -0.65$. IR: 2940, 1730, 1350, 1240. ¹H-NMR: 0.78 (s, 3 H); 1.00 (s, 3 H); 1.07 (t, J = 7, 3 H); 1.58 (m, 1 H); 1.80 (m, 2 H); 1.73 (m, 3 H); 2.06 (s, 3 H); 2.33 (m, 1 H); 2.51 (m, 2 H); 5.24 (br. s, 1 H). ¹³C-NMR: Table 4. MS: 210 (2, M⁺⁺), 150 (32), 135 (100), 122 (56), 107 (75), 93 (60), 79 (30), 43 (59).

(+)-(1 R, 3 S, 5 S)-1, 2, 2-*Trimethyl*-6, 7, 8-*trioxabicyclo*[3.2.1]*octane*-3-*ethyl* Acetate ((+)-15a). The ozonolysis of (-)-14b was effected according to the procedure described for (-)-14d \rightarrow (+)-16b. The crude ozonide was used for the next step as a 6:4 mixture of diastereoisomers ($\alpha_{20}^{20} = +29.6$). A small quantity (5 g) was purified by chromatography (SiO₂, 200 g, toluene/AcOEt 95:5) to give the major (1R, 3S, 5S)-diastereoisomer first eluted as a 97:3 mixture ($\alpha_{20}^{20} = +44.2$). The minor (1S, 3S, 5R)-diastereoisomer was isolated as a 23:77 mixture ($\alpha_{20}^{20} = +12.3$) in the last fractions (both diastereoisomers have same R_f on TLC). IR: 2990, 1740, 1440, 1370, 1240, 1100, 1020, 900. ¹H-NMR: major diastereoisomer: 1.00 (s, 3 H); 1.14 (s, 3 H); 1.46 (s, 3 H); 1.50 (m, 1 H); 1.77 (dt, J = 7, 15, 1 H); 2.05 (s, 3 H); 2.10 (m, 3 H); 4.08 (m, 2 H); 5.73 (br. s, 1 H); minor diastereoisomer: 0.94 (s, 3 H); 0.96 (s, 3 H); 1.30 (m, 3 H); 1.48 (s, 3 H); 1.80 (m, 1 H); 1.90 (m, 1 H); 2.06 (s, 3 H); 2.16 (m, 2 H); 5.71 (br. s, 1 H). ¹³C-NMR: Major diastereoisomer: 1.10 (ta, 3 (C(2)); 63.8 (CH₂CH₂OAc); 102.4 (C(5)); 112.1 (C(1)); 171.1 (MeCOO); minor diastereoisomer: 16.7 (Me-C(1)); 17.7 (Me_{endo} -C(2)); 20.9 (MeCOO); 21.9 (Me_{exo} -C(2)); 28.9 (CH₂CH₂OAc); 33.5 (C(4)); 33.9 (C(3)); 40.9 (C(2)); 62.8 (CH₂CH₂OAc); 102.0 (C(5)); 112.7 (C(1)); 171.0 (MeCOO). MS: 244 ($0, M^+$), 184 (3), 124 (11), 109 (29), 81 (48), 43 (100).

(+)-(1R,3S,5S)-1-Ethyl-2,2-dimethyl-6,7,8-trioxabicyclo[3.2.1] octane-3-ethyl Acetate ((+)-15b). See (-)-14d \rightarrow (+)-16b. The crude ozonide (+)-15b was used without purification to give (+)-16b. A small amount of (+)-15b was purified by chromatography (SiO₂, toluene/AcOEt95:5) to give a 2:1 mixture of the (1R,3S,5S)- and (1S,3S,5R)-diastereoisomers $(\alpha_D^{2D} = +35.1)$. IR: 2980, 1730, 1360, 1240, 1100. ¹H-NMR: major isomer: 0.94 (*t*, J = 7, 3 H); 0.96 (*s*, 3 H); 1.12 (*s*, 3 H); 1.28 (*m*, 1 H); 1.48 (*m*, 1 H); 1.7-1.97 (*m*, 4 H); 2.05 (*s*, 3 H); 2.10 (*m*, 1 H); 4.07 (*m*, 2 H); 5.73 (*m*, 1 H); minor isomer: 0.93 (*s*, 3 H); 0.94 (*t*, J = 7, 3 H); 0.96 (*s*, 3 H); 1.28 (*m*, 1 H); 1.48 (*m*, 1 H); 1.70-1.97 (*m*, 4 H); 2.06 (*s*, 3 H); 2.10 (*m*, 1 H); 4.07 (*m*, 2 H); 5.73 (*m*, 1 H); minor isomer: 0.93 (*s*, 3 H); 0.94 (*t*, J = 7, 3 H); 0.96 (*s*, 3 H); 1.28 (*m*, 1 H); 1.48 (*m*, 1 H); 1.70-1.97 (*m*, 4 H); 2.06 (*s*, 3 H); 2.10 (*m*, 1 H); 4.07 (*m*, 2 H); 5.73 (*m*, 1 H); minor isomer: 0.93 (*s*, 3 H); 0.94 (*t*, J = 7, 3 H); 0.96 (*s*, 3 H); 1.28 (*m*, 1 H); 1.48 (*m*, 1 H); 1.70-1.97 (*m*, 4 H); 2.06 (*s*, 3 H); 2.10 (*m*, 1 H); 5.72 (*m*, 1 H). ¹³C-NMR: major isomer: 5.99 (CH₃CH₂); 20.8 (MeCOO); 21.7 (CH₃CH₂, Me_{exo}-C(2)); 26.5 (Me_{endo}-C(2)); 29.8 (CH₂CH₂OAc); 30.7 (C(4)); 38.5 (C(3)); 40.8 (C(2)); 63.8 (CH₂CH₂OAc); 10.2 (C(5)); 112.6 (C(1)); 171.1 (MeCOO); minor isomer: 6.1 (CH₃CH₂); 17.6 (Me_{endo}-C(2)); 20.9 (MeCOO); 21.2 (CH₃CH₂); 21.6 (Me_{exo}-C(2)); 28.9 (CH₂CH₂OAc); 33.7 (C(4)); 34.3 (C(3)); 41.2 (C(2)); 62.9 (CH₂CH₂OAc); 101.9 (C(5)); 113.3 (C(1)); 171.0 (MeCOO). MS: 258 (0, M^+), 184 (4), 124 (27), 109 (63), 96 (32), 81 (62), 57 (62), 43 (100).

(+)-(1 R)-6,6-Dimethyl-5-oxocyclohex-3-ene-1-ethyl Acetate ((+)-16a). Obtained from (-)-14b in 65% yield after distillation through a 12-cm Vigreux column as a colourless oil, according to the procedure used for (-)-14d \rightarrow (+)-16b. B.p. 85–89°/0.055 Torr. α_{D}^{20} = +56.2. IR: 2950, 1720, 1660, 1460, 1420, 1380, 1360, 1230. ¹H-NMR: 1.00 (s, 3 H); 1.18 (s, 3 H); 1.53 (m, 1 H); 1.93 (m, 2 H); 2.06 (s, 3 H); 2.17 (m, 1 H); 2.52 (dt, J = 7, 18, 1 H); 4.12 (m, 2 H); 5.97 (d, J = 9, 1 H); 6.84 (m, 1 H). ¹³C-NMR: Table 5. MS: 210 (1, M⁺), 150 (15), 135 (9), 82 (73), 68 (100), 43 (32).

(+)-(1R)-4,6,6-Trimethyl-5-oxocyclohex-3-ene-1-ethyl Acetate ((+)-16b). A soln. of (-)-14d (304 g, 1.45 mol) in CH₂Cl₂ (800 ml) and MeOH (700 ml) was cooled at -40°, and a flow of O₃ was passed through (18 g/h), until no more starting material was detected. The apparatus was purged with N₂, and Me₂S (285 ml) was added dropwise at -20°. The mixture was stirred overnight at 23° and then concentrated. The crude oil was diluted with cyclohexane (400 ml), and TsOH (13 g, 0.068 mol) was added. The mixture was refluxed during 4 h with continuous separation of H₂O. The cold soln. was washed with H₂O, sat. aq. Na₂CO₃ soln., H₂O, and brine, dried (Na₂SO₄), and evaporated. The crude oil (270 g) was distilled through a 25-cm helices-packed column: pure (+)-16b (136 g, 42%). Pale yellow oil. B.p. 88°/0.03 Torr. α_{20}^{20} = +65.8. IR: 2970, 1730, 1660, 1360, 1230, 1030. ¹H-NMR: 0.97 (s, 3 H); 1.17 (s, 3 H); 1.49 (m, 1 H); 1.77 (s, 3 H); 1.90 (m, 2 H); 2.05 (s, 3 H); 2.10 (m, 1 H); 2.45 (m, 1 H); 4.12 (m, 2 H); 6.60 (br. s, 1 H). ¹³C-NMR: Table 5. MS: 224 (4, M⁺⁺), 164 (6), 149 (8), 82 (100), 54 (12), 43 (14).

(+)-(1 R)-2,2-Dimethyl-3-oxocyclohexane-1-ethyl Acetate ((+)-17a). A soln. of (+)-16a (33.6 g, 0.16 mol) in EtOH (300 ml) was hydrogenated at r.t./1 atm during 8 h (5 1 of H₂) over Raney-Ni (1.4 g). The mixture was filtered, evaporated, dried (Na₂SO₄), and distilled: (+)-17a (32.2 g, 95%). B.p. 84°/0.05 Torr $\alpha_{D}^{D} = +64.8$. IR: 2950, 1725, 1700, 1360, 1240. ¹H-NMR: 1.04 (s, 3 H); 1.11 (s, 3 H); 1.45 (m, 1 H); 1.56 (m, 2 H); 1.62 (m, 1 H); 1.86 (m, 2 H

2 H); 2.00 (*m*, 1 H); 2.05 (*s*, 3 H); 2.31 (*m*, 1 H); 2.56 (*m*, 1 H); 4.04 (*m*, 1 H); 4.17 (*m*, 1 H). ¹³C-NMR: *Table 5*. MS: 212 (1, *M*⁺⁺), 152 (13), 137 (41), 124 (45), 109 (68), 96 (42), 81 (98), 67 (49), 55 (57), 43 (100).

(+)-(1 R, E)-2,2-Dimethyl-3-[(4-tolylsulfonyl)hydrazono]cyclohexane-1-ethyl Acetate ((+)-17b). A soln. of (+)-17a (50 g, 0.236 mol), tosylhydrazine (44,6 g, 0.24 mol), and conc. H₂SO₄ (2 drops) in MeOH (200 ml) was refluxed for 6 h, then evaporated. The crude oil (101 g) was chromatographed (SiO₂, 500 g, cyclohexane/AcOEt 6:4): crystalline (+)-17b (78 g, 87%). M.p. 146–148° (acetone). $[a]_{2D}^{2D} = +13.3$ (c = 2.5, CHCl₃). IR: 3240, 2950, 1725, 1600, 1360, 1325, 1240, 1160. 'H-NMR: 0.90 (s, 3 H); 1.10 (s, 3 H); 1.27 (m, 2 H); 1.34 (m, 2 H); 1.77 (m, 3 H); 2.43 (s, 3 H); 2.45 (m, 1 H); 4.02 (m, 2 H); 7.31 (d, J = 7, 2 H); 7.80 (br. s, 1 H); 7.85 (d, J = 7, 2 H). ¹³C-NMR (systematic numbering): 20.9 (MeCOO); 21.3 (Me-C(2), cis to CH₂CH₂OAc); 21.6 (MeC₆H₄SO₂); 22.9 (C(4)); 23.9, 26.3 (C(5), C(6)); 24.7 (Me-C(2)); 28.9 (CH₂CH₂OAc); 42.6 C(2)); 43.9 C(1)); 63.3 (CH₂CH₂OAc); 128.3 (c_0); 129.3 (c_m); 135.5 (c_p); 143.7 (c_{ipx0}); 166.5 (C(3)); 171.1 (MeCOO). MS: 380 (0, M^+), 136 (66), 121 (80), 107 (70), 91 (97), 81 (95), 67 (85), 55 (38), 43 (100).

(+)-(1 R)-2,2-Dimethyl-3-methylidenecyclohexane-1-ethyl Acetate ((+)-17c). To a soln. of t-BuOK (33.6 g, 0.3 mol) and [PPh₃(Me)]I (121.2 g, 0.3 mol) in toluene (500 ml) under reflux was added dropwise a soln. of (+)-17a (27 g, 0.127 mol) in toluene (50 ml). After 3 h, the cooled mixture was poured onto ice and extracted with Et₂O (4 × 100 ml). The org. phase was successively washed with sat. aq. NaCl soln. (4 × 100 ml), dried (Na₂SO₄), and evaporated. The crude oil (29.3 g) was purified by chromatography (SiO₂, 580 g, cyclohexane/AcOEt 8:2): (+)-17c (19.1 g, 72%). Colourless oil. B.p. 115°/Torr. α_{20}^{20} = +58.8. IR: 2900, 1705, 1600, 1410, 1330, 1200, 1000, 860. ¹H-NMR: 0.95 (s, 3 H); 1.12 (s, 3 H); 1.33 (m, 4 H); 1.72 (m, 2 H); 1.86 (m, 1 H); 2.03 (s, 3 H); 2.20 (m, 2 H); 4.00 (m, 1 H); 4.65 (s, 2 H). ¹³C-NMR: Table 5. MS: 210 (0, M⁺⁺), 150 (30), 135 (70), 122 (67), 107 (100), 93 (66), 79 (86), 67 (48), 55 (35), 43 (53).

(+)-(1 R)-2,2-Dimethyl-3-methylidenecyclohexane-1-ethanol ((+)-17d). To a suspension of LiAlH₄ (0.4 g, 10.5 mmol) in Et₂O (50 ml) was added dropwise at -10° a soln. of (+)-17c (3.6 g, 17.1 mmol) in Et₂O (20 ml). After 1 h at r.t., H₂O (0.4 ml), 15% aq. NaOH soln. (0.4 ml), and H₂O (1.2 ml) were successively added at 0°. The mixture was filtered over *Celite* and evaporated. The crude oil (2.9 g) was purified by bulb-to-bulb distillation: (+)-17d (2.77 g, 96%). Colourless oil. B.p. 100°/0.1 Torr. $\alpha_D^{20} = +69$. IR: 3300, 2920, 1630, 1440, 1380, 1160, 1050, 890. ¹H-NMR: 0.96 (s, 3 H); 1.13 (s, 3 H); 1.3 (m, 4 H); 1.45 (br. s, OH); 1.74 (m, 2 H); 1.79 (m, 1 H); 2.2 (m, 2 H); 3.59 (m, 1 H); 3.69 (m, 1 H); 4.65 (s, 2 H). ¹³C-NMR: *Table 5*. MS: 168 (8, M^{+-}), 153 (11), 135 (41), 123 (61), 107 (100), 93 (45), 79 (99), 67 (94), 55 (70), 41 (68).

(+)-(1 R)-2,2-Dimethyl-3-methylidenecyclohexane-1-acetaldehyde ((+)-18). Obtained in 99 % yield from (+)-17d according to the procedure used for (--)-2k. B.p. 100°/0.1 Torr. $\alpha_D^{20} = +20.5$. IR: 2940, 1720, 1630, 890. ¹H-NMR: 0.96 (s, 3 H); 1.14 (s, 3 H); 1.40 (m, 2 H); 1.70 (m, 2 H); 1.94 (m, 1 H); 2.15 (m, 1 H); 2.22 (m, 2 H); 2.57 (m, 1 H); 4.70 (d, J = 7, 2 H); 9.74 (t, J = 2, 1 H). ¹³C-NMR: Table 5. MS: 166 (4, M⁺⁺), 151 (10), 133 (45), 122 (61), 107 (100), 91 (35), 79 (58), 67 (50), 55 (40), 41 (49).

(-)-(1 R)-2,2-Dimethylcyclohex-3-ene-1-ethanol ((-)-19a). To a soln. of (+)-17b (76 g, 0.2 mol) in Et₂O (760 ml) at -5° was added dropwise a soln. of MeLi in Et₂O (580 ml, 1.4w, 0.81 mol). After 15 h at r.t., the mixture was quenched with H₂O (200 ml), extracted twice with Et₂O, washed twice with brine, dried (Na₂SO₄), evaporated, and distilled: (-)-19a (24 g, 78%). Colourless oil. B.p. 104–105°/0.011 Torr. $\alpha_D^{20} = -3.32$. IR : 3350, 2940, 1460, 1360, 1050. ¹H-NMR: 0.85 (s, 3 H); 1.00 (s, 3 H); 1.27 (m, 1 H); 1.35 (br. s, OH); 1.36 (m, 1 H); 1.44 (s, 1 H); 1.67 (m, 1 H); 1.80 (m, 1 H); 1.99 (m, 2 H); 3.65 (m, 1 H); 3.77 (m, 1 H); 5.38 (dt, J = 8, 3, 1 H); 3.54 (dt, J = 8, 3, 1 H). ¹³C-NMR: Table 5. MS: 154 (2, M⁺), 136 (20), 121 (24), 109 (78), 93 (69), 82 (77), 67 (100), 41 (32).

(-)-(1 R)-2,2,3-Trimethylcyclohex-3-ene-1-ethyl Acetate ((-)-19b). A soln. of (+)-17c (7 g, 33.3 mmol) and TsOH (0.2 g, 1.16 mmol) in toluene (50 ml) was refluxed for 2 h. The cold soln. was washed successively with sat. aq. NaHCO₃ soln. and brine, and dried (Na₂SO₄). The crude oil was purified by chromatography (SiO₂, 520 g, cyclohexane/AcOEt 9:1) to give (-)-19b (4.84 g, 70%). Colourless oil. B.p. 130°/0.1 Torr. $\alpha_{D}^{2D} = -8.9$. IR: 2900, 1700, 1410, 1325, 1200, 1000. ¹H-NMR: 0.89 (s, 3 H); 1.02 (s, 3 H); 1.34 (m, 3 H); 1.64 (s, 3 H); 1.70 (m, 1 H); 1.88 (m, 1 H); 1.95 (m, 2 H); 2.05 (s, 3 H); 4.05 (m, 1 H); 4.19 (m, 1 H); 5.32 (br. s, 1 H). ¹³C-NMR: Table 5. MS: 210 (0, M^+), 150 (23), 135 (60), 121 (19), 107 (100), 96 (32), 93 (37), 81 (53), 69 (18), 55 (14), 43 (27).

(-)-(1R)-2,2,3-*Trimethylcyclohex-3-ene-1-ethanol* ((-)-19c). Obtained in 95% yield from (-)-19b according to the procedure used for (+)-17d. B.p. 100°/0.1 Torr. $\alpha_{20}^{20} = -12.8$. IR: 3300, 2950, 1440, 1360, 1050. ¹H-NMR: 0.89 (s, 3 H); 1.03 (s, 3 H); 1.34 (m, 4 H); 1.50 (s, OH); 1.65 (d, J = 2, 3 H); 1.81 (dt, J = 7, 9, 1 H); 1.95 (m, 2 H); 3.64 (m, 1 H); 1.75 (m, 1 H); 5.32 (br. s, 1 H). ¹³C-NMR: *Table 5*. MS: 168 (17, M^+), 150 (9), 135 (37), 123 (62), 107 (72), 96 (53), 93 (40), 81 (100), 69 (40), 55 (29), 41 (43).

1 H); 5.38 (dt, J = 8, 2, 1 H); 5.55 (dt, J = 8, 3, 1 H); 9.80 (d, J = 3, 1 H). ¹³C-NMR: *Table 5*. MS: 152 (2, M^+), 137 (4), 108 (85), 93 (100), 82 (32), 67 (62), 41 (27).

(-)-(1 R)(2,2,3-Trimethylcyclohex-3-ene-1-acetaldehyde ((-)-20b). Obtained in 92% yield from (-)-19c according to the procedure used for (-)-2k. B.p. 100°/0.1 Torr. $\alpha_D^{20} = -37.5$. IR: 2960, 2720, 1720, 1440, 1360. ¹H-NMR: 0.90 (s, 3 H); 1.06 (s, 3 H); 1.43 (m, 1 H); 1.60 (m, 1 H); 1.66 (d, J = 2, 3 H); 1.98 (m, 2 H); 2.03 (dt, J = 2, 8, 1 H); 2.21 (dd, J = 2, 8, 15, 1 H); 2.58 (dd, J = 2, 15, 1 H); 5.35 (br. s, 1 H); 9.79 (dd, J = 1, 3, 1 H). ¹³C-NMR: Table 5. MS: 166 (11, M^{+1}), 133 (25), 121 (39), 107 (100), 96 (26), 91 (31), 81 (62), 69 (20), 55 (18), 41 (32).

REFERENCES

- a) D. W. Christianson, W. N. L. Lipscomb, Acc. Chem. Res. 1989, 22, 62; b) B. W. Matthews, *ibid.* 1988, 21, 333; c) S. J. Benkovic, C. A. Fierke, A. M. Naylor, Science 1988, 239, 1105.
- [2] a) T. M. Beardsley, Scient. Am. 1989, 11, 12; b) E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, W. D. Fuller,
 D. F. Mierke, M. Goodman, J. Am. Chem. Soc. 1990, 112, 8909; c) M. M. Waldrop, Science 1990, 248, 817.
- [3] a) A. Beyer, P. Wolschann, A. Becker, G. Buchbauer, K. Mraz, Eur. J. Med. Chem. 1987, 22, 479; b) A. Beyer,
 P. Wolschann, A. Becker, E. Pranka, G. Buchbauer, Monatsh. Chem. 1988, 119, 711; c) A. Beyer, P. Wolschann, A. Becker, G. Buchbauer, S. Winiwarter, Flavour Fragrance J. 1988, 3, 173.
- [4] a) J. E. Amoore, 'Molecular Basis of Odour', C. C. Thomas, Springfield, USA, 1970; b) J.I. Kato, M. M. Ito, M. Tsuyuki, S. Skimizu, Y. Kainami, T. Inakuma, H. Matsuoka, T. Isago, K. Tajima, T. Endo, J. Chem. Soc., Perkin Trans. 2 1991, 131; c) L. B. Kier, T. Di Paolo, L. H. Hall, J. Theor. Biol. 1977, 67, 585; d). M. Chastrette, D. Zakarya, C. Pierre, Eur. J. Med. Chem. 1990, 25, 433.
- [5] a) C. Fehr, J. Galindo, R. Haubrichs, R. Perret, *Helv. Chim. Acta* 1989, 72, 1537; b) H. van de Waterbeemd,
 B. Testa, in 'Advances in Drug Research', Ed. B. Testa, Academic Press, New York, 1987, Vol. 16, p. 85.
- [6] a) W.J. Dunn III, S. Grigoras, M.G. Koehler, J. Med. Chem. 1987, 30, 1211; b) G. Buchbauer, K. Leonhardsberger, S. Winiwarter, P. Wolschann, Helv. Chim. Acta 1992, 75, 174.
- [7] A. Becker, G. Buchbauer, S. Winiwarter, P. Wolschann, J. Ess. Oil. Res. 1990, 2, 221.
- [8] W.J. Dunn III, Progr. Clin. Biol. Res. 1989, 291, 47.
- [9] B. Winter, Helv. Chim. Acta 1989, 72, 1278.
- [10] R. Young, G. Durant, J.C. Emmett, R.C. Ganellin, M.J. Graham, R.C. Mitchell, H.D. Prain, M.L. Roantree, J. Med. Chem. 1986, 29, 44.
- [11] a) A. Leo, J. Chem. Soc., Perkin Trans. 2 1983, 825; b) F. Helmer, K. Kiehs, C. Hansch, Biochemistry 1968, 7, 2858; c) P. Camilleri, S.A. Watts, J.A. Boraston, J. Chem. Soc., Perkin Trans. 2 1988, 1699.
- [12] R. M. Wenger, T. Payne, Progr. Clin. Biol. Res. 1989, 291, 301.
- [13] a) H. Weinstein, Enzyme 1986, 4, 36; b) D. Hadzi, J. Koller, M. Hodoscek, D. Kocjan, in 'QSAR in Drug Design and Toxycology', Ed. D. Hadzi, Elsevier, Amsterdam, 1987, p. 179; c) A. Boudon, J. R. Chrétien, C. R. Séances Acad. Sci. 1988, 505; d) A. Boudon, J. Szymoniak, J. R. Chrétien, Eur. J. Med. Chem. 1988, 23, 365.
- [14] a) L. B. Kier, L. H. Hall, 'Molecular Connectivity in Structure-Activity Analysis', J. Wiley, New York, 1986;
 b) D. Rouvray, New Scient. 1991, 3, 22; c) M. A. Hahn, W. T. Wipke, Chem. Design Automation News 1988, 3, 1.
- [15] B. Robson, E. Platt, R. V. Fishleigh, A. Marsden, P. Millard, J. Mol. Graph. 1987, 5, 8.
- [16] M. Chastrette, unpublished results.
- [17] G. M. Maggiora, M.A. Johnson, M.S. Laginess, A.B. Miller, T.R. Hagadone, Math. Comput. Modelling 1988, 11, 626.
- [18] a) R. E. Naipawer, 'Flavors and Fragrances: World Perspective', Eds. B. M. Lawrence, B. D. Mookherjee, and B. J. Willis, Elsevier, Amsterdam, 1988, p. 805; b) J. Gora, J. Gibka, *Pollena-TSPK* 1986, 5, 111; c) E. J. Brunke, E. Klein, *Essential Oils* 1981, 83; d) K. H. Schulte-Elte, B. Müller, H. Pamingle, to *Firmenich SA*, 1985, Eur. Pat. 85102513.0 (*CA:* 1986, 105, 191435q); e) G. Ohloff, B. Winter, C. Fehr, 'Perfumes: Art, Science, and Technology', Eds. P.M. Müller and D. Lamparsky, Elsevier, Amsterdam, 1991, p. 287; f) C. Chapuis, to *Firmenich S.A.* (15th Feb. 1992, unpublished) Eur. Pat. Appl. 92102553.2.
- [19] M. Laguerre, A. Carpy, in 'QSAR Quantitative Structure Activity Relationships in Drug Design', Ed. J. L. Fauchère, A. R. Liss Inc., New York, 1989, p. 222.
- [20] a) H. Uhlig, M. Mühlstädt, K. Schulze, *Miltitzer Ber.* 1985, 23; b) K. Schulze, H. Uhlig, *Monatsh. Chem.* 1989, 120, 547; c) H. Uhlig, K. Schulze, Z. Chem. 1988, 28, 97.
- [21] a) K. Arata, K. Tanabe, Chem. Lett. 1979, 1017; b) T. Kurate, Yukagaku 1987, 36, 206, 680.

- [22] a) B. Arbuzow, Chem. Ber. 1935, 68, 1430; b) L.C. King, H.J. Farber, J. Org. Chem. 1961, 26, 326; c) M.P. Martshorn, D.N. Kirk, A.F.A. Wallis, J. Chem. Soc. 1965, 5494.
- [23] J. B. Lewis, G. W. Hedrick, J. Org. Chem. 1965, 30, 4271.
- [24] a) H. Amri, N. M. El Gaied, M. M'Hirsi, J. Soc. Chim. Tunis. 1983, 10, 25; b) J.K. Crandall, L.H. Chang, J. Org. Chem. 1967, 32, 435.
- [25] a) P. Yates, R.O. Loutfy, Acc. Chem. Res. 1975, 8, 209; b) S. Wolf, F. Barany, W.C. Agosta, J. Am. Chem. Soc. 1980, 102, 2378.
- [26] H. Kotsuki, I. Kadota, M. Ochi, J. Org. Chem. 1990, 55, 4417.
- [27] O. Samuel, R. Conffigual, M. Lauer, S.Y. Zhang, H.B. Kagan, Nouv. J. Chim. 1981, 15.
- [28] H.C. Brown, P.V. Ramachandran, S.A. Weissman, S. Swaminathan, J. Org. Chem. 1990, 55, 6328.
- [29] a) Y. Matsubara, T. Kishimoto, H. Yamamoto, W. Minematsu, Nippon Kagaku Kaishi 1972, 3, 669); b) G. A. Tolstikov, A. Y. Spivak, L. M. Khalikov, E. V. Vasileva, S. I. Lomakini, I. A. Ivanova, Izv. Akad. Nauk SSSR Ser. Khim. 1985, 8, 1814.
- [30] H. Minlon, J. Am. Chem. Soc. 1946, 68, 2487.
- [31] a) L. Borowiecki, A. Kazubski, E. Reca, Liebigs Ann. Chem. 1982, 1766; b) I. Ribas, J. Sueiras, F.J. Benavente, P. Cunat, R. Martinez-Pardo, An. Quim. Ser. C 1982, 78, 36; c) Taiyo Perfumery Co. Ltd. Kokai Jpn Pat. 7594141, 1975.
- [32] D.L.J. Opdyke, Food Cosmet. Toxicol. 1974, 12, 943.
- [33] a) A. Köver, H. M. R. Hoofmann, Tetrahedron 1988, 44, 6831; b) C. Mora, Camillo, Eur. Pat. 175,850, 1986.
- [34] a) L.A. Paquette, M. Gugelchuk, M.L. McLaughlin, J. Org. Chem. 1987, 52, 4732; b) M.L. McLaughlin, J. A. McKinney, L. A. Paquette, *Tetrahedron Lett.* 1986, 27, 5595; c) C.A. Cupas, W.S. Roach, J. Org. Chem. 1969, 34, 742; d) G. Ohloff, Chem. Ber. 1957, 90, 1554.
- [35] R. R. Krishna, H. P. S. Chewla, S. Dev, Indian J. Chem., Sect. B 1983, 22, 193.
- [36] Y. Bessière, E. Reca, F. Chatzoploulos-Ouar, G. Boussac, J. Chem. Res. (S) 1977, 302; ibid. (M) 1977, 3501.
- [37] H.J. Lin, B. Ramani, Synth. Commun. 1985, 15, 965.
- [38] M.C. Carreiras, B. Rodriguez, R.E. Lopez-Garcia, R. M. Rabanal, Phytochemistry 1987, 26, 3351.
- [39] G. Rauchschwalbe, M. Schlosser, Helv. Chim. Acta 1975, 58, 1094.
- [40] a) W. F. Erman, 'Chemistry of the Monoterpenes', Ed. P. G. Gassman, M. Dekker Inc., New York, 1985, p. 11; b) T. K. Devon, A. I. Scott, 'Handbook of Naturally Occurring Compounds', Academic Press, New York, 1972, Vol. II.
- [41] a) J. K. Crandall, L. C. Crawley, Org. Synth. 1973, 53, 17; b) J. P. Monthéard, Y. Chrétien-Bessière, Bull. Soc. Chim. Fr. 1968, 336.
- [42] H. Marschall, J. Penninger, P. Weyerstahl, Liebigs Ann. Chem. 1982, 1, 49.
- [43] A. Kergomard, J.C. Tardivat, J.P. Vuillerme, Bull. Soc. Chim. Fr. 1974, 11, 2572.
- [44] B. B. Snider, J. Org. Chem. 1974, 39, 255.
- [45] R. M. Giddings, R. Jones-Parry, R. Owen, D. Whittaker, J. Chem. Soc., Perkin Trans. 2 1986, 1525.
- [46] a) P. Kabasakalian, E. R. Townley, J. Org. Chem. 1962, 27, 3562; b) R. E. Partch, *ibid.* 1963, 28, 276; c) M. Nakazaki, K. Naemura, Bull. Chem. Soc. Jpn. 1964, 37, 532.
- [47] G. Ohloff, 'Riechstoffe und Geruchssinn, Die Molekulare Welt der Düfte', Springer Verlag, Berlin, 1990.
- [48] a) H.J. Liu, W.H. Chan, Can. J. Chem. 1982, 60, 1081; b) K. Sakurai, T. Kitahara, K. Mori, Tetrahedron 1988, 44, 6581; c) H.J. Liu, M. Ralitsch, J. Chem. Soc., Chem. Commun. 1990, 14, 997.
- [49] a) R.R. Sauers, J. Am. Chem. Soc. 1959, 81, 925; b) A.F. Thomas, Helv. Chim. Acta 1972, 55, 815.
- [50] a) K. H. Schulte-Elte, H. Pamingle, *Helv. Chim. Acta* 1989, 72, 1158; b) D. J. Goldsmith, C. J. Cheer, J. Org. Chem. 1965, 30, 2264.
- [51] a) M. J. Begley, C. B. Jackson, G. Pattenden, *Tetrahedron* 1990, 46, 4907; b) B. Karlsson, A. M. Pilotti, A.-C. Söderholm, T. Norin, S. Sundin, M. Sumimoto, *ibid.* 1978, 34, 2349.
- [52] a) H. Wolleb, H. Pfander, Helv. Chim. Acta 1986, 69, 646; b) M. Gerspacher, H. Pfander, ibid. 1989, 72, 151.
- [53] a) R. H. Shapiro, M. J. Hearth, J. Am. Chem. Soc. 1967, 89, 5734; b) R. H. Shapiro, Tetrahedron Lett. 1968, 345.
- [54] D. M. Hodgson, P. J. Parsons, P. A. Stones, Tetrahedron 1991, 47, 4133.
- [55] F. Mohamadi, N. Richards, W. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, W.C. Still, J. Comput. Chem. 1990, 11, 440.
- [56] a) G.V. Smith, O. Zahraa, A. Molnar, M.M. Khan, B. Rihter, W.E. Brower, J. Catal. 1983, 83, 238; b) H. Eschinazi, H. Pines, J. Org. Chem. 1959, 24, 1369.
- [57] a) H. C. Brown, S. R. Randad, K. S. Bhat, M. Zaidlewicz, S. A. Weissman, P. K. Jadhav, P. T. Perumal, J. Org. Chem. 1988, 53, 5513; b) G. Ohloff, G. Schade, H. Farnow, Chem. Ber. 1957, 90, 106.
- [58] C.S. Shiner, C.M. Garner, R.C. Haltiwanger, J. Am. Chem. Soc. 1985, 107, 7167.
- [59] M.G. Vinogradov, G.P. Il'ina, G.I. Nikishin, Zh. Org. Khim. 1974, 10, 1153.